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FOREWORD

In connection with the widespread use of supersonic flying

craft, close attention has been given to problems associated with

aerodynamic and radiant heating in flight. Of particular importance

is the heat shielding of the crew, of the structure and equipment,

the selection of structural materials, and the determination of the

thermal stresses in the structure. To solve these problems. it is

necessary first to determine the temperature of the exterior shield-

ing. This is the purpose of this work.

In considering aerodynamic heat transfer, we took into oon-

sideration the entire range of velocities and altitudes possible

during flight in the atmosphere. However, not all the problems

dealt with in this connection were given equal attention. This is

explained by the limited attention devoted to certain questions in

the scientific literature and by the fact that the work is intended,

for the most part, for educational purposes.

In examining the problems of radiation heat transfer, primary

attention is given to emission, since it is of great significance

from the standpoint of thermal balance in aerodynamic as well as in

radiant heating.

In connection with the increasingly wide use of shielding

materials with low thermal conductivity, and also in connection

with the use of thick shielding in the case of intensive heating,

the present work presents a method for determining the temperatures

FTD- TT-62-697/1+2



of thin as well as thick shielding. In addition the criterion for

thin shielding is presented, as is a method for determining the thick-

ness of the required insulation.

The present work is intended for preliminary tentative cal-

culations; consequently, in the majority of cases we present approxi-

mation methods of calculation in order to obtain a quick result. In

connection with the fact that we are pirmarily concerned with edu-

cational purposes, we consider only the simplest design elements

(plate, shape, delta wing, cone, region of the critical point of

the forward blunt end of the body).

Although this work takes into consideration a wide range of

velocities, it should be borne in mind that the accuracy of the cal-

culations with respect to heat transfer will decrease as the Mach

numbers increase, since such factors as dissociation, recombina-

tion, and the development of the thickness of the boundary layer

can be calculated only with a relatively low degree of accuracy.

The radiation of the air behind the shock wave at high Mach numbers

may lead to greater heat transfer than in the case of aerodynamic

heat transfer and establishes the applicability limit of the above

methods for the determination of the temperature at the critical

point. The radiation of the air behind the shock wave is given only

qualitative consideration.

In this work it has not been our intention to examine methods

of heat shielding and consequently certain problems of heat trans-

fer closely related to measures of heat protection have not been

dealt with. Heat transfer in the case of porous cooling and sub-

limation is related to these questions. We have also not considered

heat transfer through multilayered shielding.

To better explain the complex methods of thermal calculations,

- 2-
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this book presents numerical examples for which the initial data

aere arbitrarily adopted.

-3-
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SYMBOLS

A - constant; accomodation coefficient;

a - coefficient of thermal diffusivity, in m 2/sec; speed of
sound, in m/sec; constant;

c - specific heat capacity, in kcal/kg.deg;

c - specific heat capacity of gas at constant pressure, in
P kcal/kg.deg;

Cf - local coefficient of aerodynamic friction;

E - energy per unit time in kg-m/sec; total radiant energy
per unit surface, per unit time, in kg/sec.m;

F - area, in m2

G - weight, in kg;

g - acceleration of gravity, in m/sec2

H - flight altitude in m; ratio of displacement thicknesses
and momentum losses for an incompressible fluid;

M'- Mach number of an undisturbed flow;

M6 - local Mach number;

Pr - Prandtl number;

p. - pressure in undisturbed flow, in kg/m2 ;

Pk - relative pressure at the surface, referred to the impactpressure of undisturbed flow;

p6 - relative pressure at the surface, referred to local impact

pressure;

q - specific heat flow, in kcal/m 2sec;

q - specific heat flow, developing as a result of aerodynamic
heating, in kcal/m2 sec;

q- specific heat flow, developing as a result of aerodynamic
heating at the critical point, in kcal/m 2 sec;
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q- specific heat flow of radiant energy absorbed by a body.
-- in kcal/m 2sec;

qiz - specific heat flow radiated by a body, in kcal/m2 sec;

nag specific heat flow involved in the heating of a body, inqng kcal/m2sec ;

qt - flow of heat removed as a result of the heat conduction
beyond the boundary of the body under consideration, referred
to 1 m2 of the outer surface of a body, in kcal/m 2 sec;

qpog - specific heat flow absorbed by a body, in kcal/m2 sec;

qokh - specific heat flow of cooling, in kcal/m 2sec;

R - radius of surface curvature, in m;

Re - Reynolds number;

Re6 - local Reynolds number;

Re kr - critical Reynolds number;

Re* - Reynolds number corresponding to the determining temperature;

r - temperature recovery factor;

S - specific heat flow of solar radiation, in kcal/m 2sec;

St - Stanton number;

s - proportionality factor for the Stanton number;

T - absolute temperature, in OK;

% - temperature of an undisturbed flow, in OK;

Tr - temperature of the adiabatic wall, in 0K;

T - temperature of the air at the outer limit of the boundary
layer (local temperature), in OK;

Tk - temperature of the inner structure, in OK;

Tob - temperature of the shielding, in OK;

Tst - temperature of the outer surface of the shielding, in OK;

Tvn - temperature of the inner surface of the shielding, in OK;

T* - determining temperature, in OK;

ust - rate of recombination at the wall, in cm/sec;

V - velocity, in m/sec;
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V6 - local velocity at the limit of the boundary layer, in m/sec;

V,- undisturbed flow velocity, in m/sec;

Vkos - first cosmic velocity (circular velocity), in m/sec;

x - distance from the leading edge or the nose, in m;

- relative coordinate from the nose or the leading edge;

y - coordinate normal to the surface, in m;

z - coordinate along the surface, perpendicular to the flow,
in m;

a - heat-transfer coefficient, in kcal/m2 sec.deg;

a0 - heat-transfer coefficient at the critical point of the
blunt nose, in kcal/m 2sec-deg;

ai - heat-transfer coefficient referred to increment in heat
content, in kg/m 2sec;

aek- equivalent coefficient of heat transfer, in kcal/m 2sec.deg;

- coefficient of the integral absorption of radiant energy;
the Biot criterion of similarity;

- bulk weight, in kg/m3 ;

6 - thickness of the boundary layer, in m;

6ob - thickness of the shielding, in m;

6* - thickness of the displacement of the boundary layer, in m;

6 - thickness of momentum loss of the boundary layer, in m;

e - coefficient of integral radiation from a smooth surface;

6 - coefficient of monochromatic radiation of wavelength X;

p - relative temperature difference along the thickness of the
p' shielding;

9 - relative temperature;

Sk - half-angle of conic flare, in radians;

K - adiabatic exponent;

X - coefficient of thermal conductivity, in kcal/m.sec-deg;
wavelength;

X - wavelength of maximum intensity, in ;

- coefficient of viscosity, in kg.sec/m2
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- coefficient of viscosity in the case of the determining

temperature, in kg.sec/m2 ;

v - coefficient of kinematic viscosity, in m 2/sec;

V* - coefficient of kinematic viscosity in the case of the
determining temperature, in m2/sec;

- similarity parameter for conic flows; relative coordinate;

p6 - air density of the outer limit of the boundary layer, in
kg.sec2/m;

pO - air density in undisturbed flow, in kg-sec 2/m4

P - air density 4n the case of the determining temperature,

in kg-sec /m ;

* - Stefan-Boltzmann constant, in kcal/m2 sec.deg4

- time, in seconds;

- Fourier criterion; the angle between the normal to the
surface of the body and the vertical, in radians; the
angle between the direction of flow and the tangent to
the surface of the wing, in radians;

X - coefficient characterizing the distribution of velocities
near the critical point; wing sweepback angle, in radians;

- angle between the direction of the solar rays and the
normal to the surface, in degrees;

- exponent.

-7-



Chapter 1

HEAT TRANSFER IN AERODYNAMIC HEATING

§ 1.1. HEAT FLOWS DEVELOPING IN FLIGHT AT THE SURFACE OF A BODY

In the case of constant air flow about any type of body, the

flow at its walls will have a velocity equal to zero. The kinetic

energy of the flow in this instance is converted into heat and the

air at the wall is heated.

In the case of complete conversion of the kinetic energy of

the flow into thermal energy, the decelerated flow temperature

would be

However, with the conversion of kinetic energy into thermal

energy, a part of this energy is dissipated and the temperature of

the air at the adiabatic wall, i.e., that part of the wall neither

absorbing nor radiating heat, will be:

T, =-.Tar( I Ar2M(1.1)

where r is the temperature recovery factor

r= (1.2)

The temperature T is called the recovery temparature or ther

temperature of the adiabatic wall, since the temperature of the

latter will actually equal Tr .

The value of the recovery factor depends in the main on the

structure of the boundary layer and on the physical properties of
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the air which are determined by the Prandtl number

~ (1.3)

where a is the coefficient of thermal diffusivity.

The engineering calculations may be assumed in approximate terms

for the laminar boundary layer

r,= ',  (1.4)

for the turbulent boundary layer

r,-- (1 ,  (1.5)

where the Prandtl number should correspond to the determining tem-

perature which may be determined from the formula given in the work

of Eckert [35]:

- 0-, 3 (T,-- 'h) --0,22 (7> -- . (1.6)

The introduction of the determining temperature produces great

differences in the temperature of the air along the thickness of

the boundary layer. It leads to a situation in which the physical

properties of the air (viscosity, density, and thermal conductivity)

along the thickness of the boundary layer are variable. In principle,

it is possible to solve problems of heat transfer without the

determining temperature by means of the corresponding integration

of the equations of the boundary layer. However, for a compressible

gas even in the case of a laminar boundary layer, it is necessary

to carry out the unwieldy numerical integration of two second-order

equations. A.D. Young [30] showed that the integration of the

equations for a laminar boundary layer of a compressible gas may

be substantially simplified, if the viscosity is represented in

the following form:

:= ATM.

In this case we will obtain results even in the form of formulas,

although admittedly these are quite cumbersome. However, use of the
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above formula for viscosity is possible only within a comparatively

narrow temperature range in the boundary layer, since w is not a

constant. Actually, in the absolute temperature range from 300 to

500'K, w = 0.72, while in the temperature range from 1000 to 20000K,

)= 0.58.

In the presence of a turbulent boundary layer it is not possible

to obtain simplified solutions, even of this type. In connection

with the difficulty of solving boundary layer equations, the method

of the determining temperature is fruitful. With this method we may

use the results of the solution of boundary layer equations for an

incompressible gas, assuming the physical properties of the air for

the determining temperature.

The value of the determining temperature depends not only on

the temperatures in Formula (1.6), but on the structure of the

boundary layer and on the Mach number. For example, G. Young and

E. Hansen proposed the following for the laminar boundary layer in

the Mach-number region from 0 to 5 [35]

T*,- 71- +0,58 (T, - T) +0,19 (T, -

while for Mach numbers from 5 to 10

T* 0,77&-10,587,,+0,237&M2.

E. Eckert showed that it is possible to give a general formula

for the determining temperature (1.6) for the entire practical range

of Mach numbers. Eckert's verification of this formula for a laminar

boundary layer by means of the results based on an exact calculation

without the determining temperature and obtained in a computer by

Young and Hansen indicated that in the range of Mach numbers from

0.2 to 22 Formula (1.6) leads to an error not exceeding 3% in the

determination of the frictional resistance, and consequently, in the

determination of heat transfer; moreover, in the majority of cases

- 10 -



(in 38 of 50) the error was less than 1% [35].

E. Eckert [351 in analyzing the investigations and experimental

data produced by other authors comes to the conclusion that Formula

(1.6) may also be used in the case of a turbulent boundary layer.

P. Monaghan [481 came to the same conclusion. Monaghan found on the

basis of theoretical investigations and an analysis of the experi-

mental data obtained with Mach numbers up to M = 8 that the deter-

mining temperature for a turbulent boundary layer may be the same

as that taken for a laminar boundary layer.

K. Erike [37] shows that the determining-temperature method

may be applied not only to laminar and turbulent boundary layers,

but also to dissociated gas. It is true that he notes that the ap-

plication of the determining-temperature method is most convenient

for preliminary aerothermodynamic calculations. A more exact solution

could be obtained with the aid of computers.

As can be seen from Formula (1.6), the determining temperature

may be calculated when the recovery temperature Tr and the tem-

perature of the wall Tst are known, but these temperatures are un-

known. Consequently, the aerodynamic heating in the case of steady-

state thermal processes should be calculated by the method of succes-

sive approximations, initially determining the Prandtl number ap-

proximately. In the case of nonsteady-state thermal process, as is

shown in § 4.1, the calculation may be carried out without succes-

sive approximations.

The dependences of the Prandtl number on the temperature accord-

ing to N.B. Vargaftik[25] and according to E. Van Dreist [5] are

given in Fig. 1.1. It is apparent from this figure that in the tem-

perature range of from 0 to 1400 0C, the Prandtl number changes withi:i a

relatively narrow range from 0.68 to 0.72. Taking the mean value

- 11 -



0.70, in accordance with Formulas (1.4) and (1.5), we obtain for the

calculation of the first approximation

r., 7 .083; r,= 0,89.

The specific flow of heat to the wall from the air heated in

the boundary layer will be expressed according to the formula of

Newton
q , ( ,- T ,), ( 1 .7 )

where ais the heat-transfer coefficient.

The values of the specific flows of heat will be determined in

kcal/m sec. Consequently, the units of the heat-transfer coefficient

will be expressed in kcal/m sec.deg.

In addition to the indicated gas-kinetic heat flow which heats

the body, the outside surface of the body may be subject in flight

to the influence of radiant energy emitted by the body, the earth,

the moon, comets, and by the galaxy; only flows of heat coming from

the sun and the earth are of practical significance in flights about

the earth. The remaining heat flows are significant only in flights

in the vicinity of corresponding planets or in galactic flights.

Pr

no H s. Bapearmury -

0 200 40 IN so 190 120 P.C

Fig. 1.1. Dependence of the Prandtl number
on the temperature for air. 1) According to
N.B. Vargaftilq 2) According to E. Van Dreist.

The specific heat flow of direct solar radiation absorbed by

the irradiated surface

- 12 -



1, -- i's Cos (1.8)

where S is the specific heat flow of solar radiation, normal to the

surface; * is the angle between the direction of the solar rays and

the normal to the surface of the body; p is the absorption coeffi-

cient which depends on the material of the surface, its structure,

and temperature.

The specific heat flow of solar radiation without taking into

consideration the absorption and scattering of its atmosphere in an

earth orbit (see (34]) is S = 0.332 kcal/m 2sec. At altitudes below

40 km, S will be less than the indicated value and will depend on

the altitude and zenith distance of the sun, and also on the meteoro-

logical conditions. At the surface when the sun is at its zenith,

S decreases by approximately 2 1/2.

The specific heat flow reflected from the surface of the earth

and from the clouds of solar rays is several times less than the

specific heat flow of direct solar radiation. At an altitude of 500 km

of the earth-sun line, in approximate terms

q,, = 0,016 (1 +2cos?) 1. (1.9)

The specific heat flow of the earth's radiation will be even

less: at a height of 500 km it is approximately

q3-= O,OO7 (1-1-2 cos?) (1.10)

The heat flow of the reflected solar rays of the earth's radia-

tion decreases with altitude. At altitudes of several thousand kilo-

meters they may be disregarded.

The total specific heat flow absorbed by the body in flight will

be

where
q., ,3 , ., 

(1.12)
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The heat being absorbed by the body will influence the radia-

tion; it will heat the body and will be drawn beyond the limits of

the section under consideration as a result of heat conduction.

The over-all heat balance when there is no cooling will be:

The specific radiation-heat flow

z~c 0(1.14)

where a is the Stefan-Boltzmann constant and is equal to

(-13,.10 -
1
2 cal/m2 sec-deg4;

e is the radiation coefficient which depends on the material of the

surface, its structure and temperature. Information on the numerical

values of e is given in Chapter 2.

The specific heat flows involved in the heating of the body

and withdrawn through the boundaries on the side depend on the tem-

perature gradient and the thickness of the shielding at the surface

of the body (T/MY)st and on the thermal conductivity%:

q, + q, -. ( ,T ), (1.15)

where y is the coordinate directed from the surface to the flow.

The thermal conductivity is seldom measured in kcal/m.hr.deg,

however, the introduction of the hours as the unit of time does

does not correspond to the technical system of units and may be

justified only in the case of constructions in which the thermal

processes last for hours and days. In the case of flying craft sub-

ject to substantial aerodynamic heating, the length of the limiting

thermal processes is usually measured in seconds and minutes. Conse-

quently, the coefficient of thermal conductivity in the given work

will be measured in kcal/m.sec.deg.

The temperature gradient at the surface of the body (PT/MY)st

- 14 -



in the general case should be determined by the Fourier equation (9]

CT d ') o4. 0 , ,')(1.16)
c [ot _,.V -ox (,)Y o. z ", ) ,: .( . 6

where c is the specific heat capacity of the shielding material; 'Y

is its bulk weight.

The specific heat flow involved in the heating of the shield-

ing

should also be found in the general case with Eq. (1.16).

When there is a temperature gradient 6T/6x or T/z, there will

arise in the shielding heat flows perpendicular to the heat flows

described above. They will be proportional to X(6T/6x) or X(6T/6z)

and should also be determined in the general case with Eq. (1.16).

§ 1.2. HEAT-TRANSFER COEFFICIENT WITH FLOW ABOUT A FLAT PLATE AT

ZERO ANGLE OF ATTACK

Determination of the heat-transfer coefficient at supersonic

speeds is a rather complex problem and at the present time we have

comparatively exact solutions only for a flat plate at zero angle

of attack, and that without taking into consideration the pressure

produced along the plate by a boundary layer whose thickness is in-

creasing. Problems with respect to determination of heat transfer

in the case of more complex flows can usually be reduced to those

of heat transfer for flat plates, making one or another assumptions.

The heat-transfer coefficient may be expressed in terms of the

dimensionless Stanton St number. The Stanton number is the similarity

criterion for heat transfer with forced motion. Here

- St T;V&c' a. (1. 17)

Frequently, in addition to the Stanton number, we also use the

dimensionless Nusselt number which is equal to

- 15 -



Sk (1.18)

moreover, the Nusselt number is related to the Stanton number in

the following way:

Nu--StRePr, (1.19)

where Re is the Reynolds number

Vx
V (1.20)

The Stanton number is proportional to the local coefficient of

friction

St sC, (1.21)

moverover, the proportionality coefficient s is a dimensionless

quantity. At low velocities and small temperature differences in

the boundary layer, s in the laminar boundary as well as in the

turbulent boundary layer is equal to (see [35])

S P (1.22)

2

To calculate the compressibility of the flow in the case of

laminar boundary layers, the Prandtl number in Formula (1.22) should

be calculated for the determining temperature [351, i.e.,
s.1, -(Ir*) -13,. (1i.23)

In the case of a turbulent boundary layer, the use of Formula

(1.23) is less well founded; however, until other methods are developed

we may assume [35]
2 ' (1.24)

It should be noted that as a result of the fact that the Prandtl

number varies within a very narrow range, the range of the possible

changes in the coefficient s will also be narrow. Adopting as the

Prandtl number the new value Pr = 0.7, we will obtain:

s 0,64.
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This value may be used for the first-approxination calculation. If the

coefficient s is known, the calculation of the Stanton number is

reduced to the determination of the local coefficient of friction.

For incompressible flow in the case of a laminar boundary layer,

the local coefficient of friction may be expressed ([35], [33],

p. 119) in the following way:

0,664
C(1.25)l Re

In the case of a turbulent boundary layer, we may use the

following formula up to Re = 107 (see [48], [331, p. 425):

0, 592 (1. 26)

The formula is in good agreement with experiments for values

106 < Re < l09 (see [35], [33], p. 433)

0,37(1.27)

The above formulas may also be used in the case of compressible

flow, if the Reynolds number is calculated from the determining tem-

perature, using Formula (1.6). Here the coefficient cf is referred to

the physical parameters of the air for the determining temperature,

i.e., to p* and p*. The Stanton number in Formula (1.17) is referred to

Cp,; for compressible flow it is necessary to calculate cp or the

determining temperature. If we consider the above, the

friction coefficient referred to the physical properties of the air

at the limit of the boundary layer, will be:

ef' (1.28)

while the Stanton number

Substituting this expression in Formula (1.17), we obtain for

the local heat-transfer coefficient:
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P' ' V (1.29)

If we take into consideration Formulas (1.23), (1.24), (1.25),

(1.26), and (1.27), we will find the over-all heat-transfer coeffic-

ient; here the heat-transfer coefficient will be:

for the laminar boundary layer

(3,Pr(P - ' .)" P .." (1 30)

for the turbulent boundary layer and Re < 107

,=r 0,29 ( Re')-°'2 (PC:)- p c' V6, (1.31)

for the turbulent boundary and lO
6 < Re < 109

1,81 (Ig 1\'')-% (Pr) . (1.32)

The value of the density for the determining temperature may

be determined from the characteristic equation, taking into con-

sideration the fact that the pressure in the boundary layer does

not change:

7'/ 7 (1.33)

The Prandtl number in these formulas may be determined from the

graph given in Fig. 1.1. To determine the Reynolds number, it is

necessary to know the relation of the viscosity to the temperature.

For this we may use the formula (see [48])

11 T, kg sec/m . (1.34)
T + 110

This formula is thoroughly validated by experiments in the

temperature range of 100 to 2000 0K. The coefficient of kinematic

viscosity in the Reynolds number

.' PIP. (1.35)

The specific heat capacity of the air may be determined from

the graph given in Fig. 1.2 This graph is constructed from the data

of N.V. Vargaftik [25] and E. Eckert (35].

For flying craft with cosmic and near-cosmic velocities the

thermal regime may be of the essence at altitudes where due to the
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great rarefaction of the air, boundary layer theory is not applicable.

This is the region of free-molecular flow; it is characterized'

by the fact that the mean molecular free path (before collision) be-

comes greater than the dimensions of the body. In such flow, there

is no boundary layer. The relation of the mean molecular free path

to the linear dimension of the body is called the Knudsen number.

The region of the free-molecular flow is characterized by the Knudsen

number (see [50])

2 Re (1.36)

CO

450~ ~ ~~4 - r- -- - _______

1 I Ib _00 -o

le H.. BapeaOmux

424

422@ 200 *00 500 800 1000 1200 14*0te

Fig. 1.2. Dependence of the specific
heat capacity of the air on the tem-
perature. 1) According to E. Eckert;
2) According to N.V. Vargaftik.

The heat transfer of the free-molecular flow depends on the

relative amount of energy transmitted by the molecules to the air

against which they collide. This relative energy is called the accom-

odation coefficient, the value of which is influenced to a certain

extent by the material and the structure of the surface. The accom-

odation coefficient values are close to unity; Table 1.1 gives the

value of the accomodation factor for certain materials [39]. A good

agreement between the theoretical heat transfer and the experimental

heat transfer is obtained if we assume A = 0.9 [23].
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TABLE 1. 1

Accomodation Coefficients for Certain Materials

KQ.44H. KOII .
MarePHa uetm aXI Iik M H UHeNT anKMo-

12 A __ _ _ _ A

A.1,OMHHIjj MauoHIIHoi 0,95+0,97 .llraa cTaJ b Mau4HHOA 0,87+0,88
6pa6oTKI 3 o6pa6oTKH 6
An.i'IIIIIN TpaBAIMhl4 0,89 0,97 7 .TITat CTaA.b 'rpa Naeia. 0,69+0.96
AAIOMIIHHfl noamf aa.. 0.87-0,95 JIHTaR cTaJlh n .lpo- 0,87+0,93

-, araa ab

1) Material; 2) accomodation coefficient A; 3) machine-
worked aluminum; 4) etched aluminum; 5) polished
aluminum; 6) machine-worked lithium steel; 7) etched
lithium steel; 8) polished lithium steel.

The heat transfer of the free-molecular flow may also be deter-

mined from Formulas (1.1) and (1.7); we must, however, take into

consideration the fact that the temperature recovery factor in free-

molecular flow increases and becomes greater than unity. Theoreti-

cally, in the case of free-molecular flow past a flat plate, the

rccovery factor equals (see [231)

r,. --7/6 1, 17.

Experiments confirm the theoretical value of the recovery

factor for the region 4 > Kn * _ 1. For Kn V-R > 4, the experi-

mental values are higher than the theoretical values and reach r =

= 1.4 (see [231).

The heat-transfer coefficient may be determined from Formula

(1.17), while the Stanton number for free-molecular flow past a flat

plate at zero angle of attack will be (see [23]):

StR. - 0,242AJ, (1.37)

where A is the accomodation coefficient, while C is the ratio of the

velocity of light to the most probable molecular velocity. The value

of C may be expressed in terms of the Mach number (see [23]):

(1.38)
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Substituting Formulas (1.137) and (1.38) in Formula (1.17), we

obtain:

=c. : {4]42act, iV[(1.39)

It is apparent from this formula that the velocity of the flight

has no influence on the heat-transfer coefficient in free-molecular

flow while if we take into consideration the small changes in

a, K, Cp, and A, the density of the air is the basic factor deter-

mining the heat-transfer coefficient.

In free-molecular flow there will be no shock wave; however,

due to the collisions of the molecules with the surface these mole-

cules may be dissociated and ionized. Due to the great length of

the molecular free path in free-molecular flow, at great hyper-

sonic velocities an extensive ionization zone developes in front

of the moving body.

For the range of Knudsen numbers [50]

0,01<Kn<O,

the flow will have a boundary layer; however, the velocity at the

surface will not equal zero. This is This is called slippage flow.

The sudden increase in the velocity in the boundary layer with

slippage alsoproduces a sudden increase in the temperature. The

theoretical determination of heat transfer in the case of flow with

slippageis quite complex and extremely unreliable [503. A compari-

son of experimental data on heat transfer with data calculated on

the basis of the theory of constant flow (continuum) with a laminar

boundary layer indicates that the heat transfer in the case of flow

with slippage is somewhat lower than the heat transfer obtained from

formulas for continuum flow [503.
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§ 1.3. THE HEAT-TRANSFER COEFFICIENT IN THE CASE OF FLOW PAST A

PLATE, A WING PROFILE, AND A BODY OF REVOLUTION

At small angles of attack for a flat plate, the heat transfer

can be determined from formulas corresponding to the plate with a

zero angle of attack, taking into consideration the local values

of the velocity, the density, and the temperature of the air at the

limit of the boundary layer. It is the lower surface that is of

greatest significance from the standpoint of heat shielding, since

the highest temperatures are attained on this surface.

Fig. 1.3. Diagram of flow about the nose
of the profile. 1) Shock wave.

In the case of flow about the lower surface of a plate witt, a

positive angle of incidence, an oblique compression wave develops on

the leading edge. Let us consider the more general case of a wing

profile, when the tangent to the profile at the investigated point

A forms the angle c with the direction of the flow on the lower

surface (see Fig. 1.3). In this case the local pressure p6 at point

A on the surface of the wing may be represented according to Buze-

man in the following way (see [29]:

- A -P.P.. =CCeC?+(1.40)

We are frequently restricted to two terms of this expansion.

This is entirely permissible, if the Mach numbers are not substan-

tially greater than 5-6. At great hypersonic velocities the neglect-

ing of the third term may produce a substantial error. As an example,
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Fig. 1.4 gives the error as a function of M, when c = 50. As can

be seen from the curve, when Mo > 20, the error may be greater than

20%. Consequently we introduce the values of the factors for a

trinomial expansion.

If we assume that the adiabatic exponent for air is 1.4, for

the coefficients cl, c2 , and c3 we obtain the following expression,

if T is determined in radians (see [29]):

cl 2(M -"; (1 .41)
e,=1[(M'-2)2+ 1,4Mt] (M.- I)-'; .2

2 (1.42)
C3== (0,36Mt. - 1,493M. +3,6M'--2M. +1,33) (M. -) (1 .43)

Here the coefficient c3 reflects the influence of the shock

wave. When the flow expands (when there is no shock wave), the

values of the coefficients c1 and c2 will remain the same, while

coefficient c3 is somewhat changed and can be expressed in the follow-

ing way:
C,= ,4e )-3.5 (1.44)

0 - 1,813M. + 4M.-2M. + i,33 ) (t,- (1

In the case of flow expansion, T is negative. If the flow ex-

pansion precedes the shock wave, as for example in the case of flow

about the rear section of the profile, the coefficient c' is also

calculated from Formula (1.44), but a term expressing the influence

of the shock wave is added to the expansion:

C;T8?,

where 91 is the angle of inclination of the surface in the forward

section in front of the shock wave, and

--(0,04M. - 0,32M.+0,4M.) (M.-)-". (1.45)

Figure 1.5 presents a graph for the determination of the coef-

ficients cl, c2 , c 3 , and c' as functions of the k number in undis-

turbed flow.
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Having determined the pressure on the lower surface of the plate

or on the nose of the wing profile by means of Formula (1.40), we

can determine the air density at this same surface with the Hugoniot

equation (see [29]):

_ +5 (1.46)
P.. palp. + 6

Cyiv).,,Z+ f

9 $ 12 is zO 24 M,

Fig 1.4. Relative error if we neglect
the third term of the expansion in
series of the relative pressure values.

,0 c z? cT 10

fii

0,6L

0,4 " 0

4 812 75 20 24 1 W

Fig. 1.5. Coefficients of the expansion in
series of relative pressure as a function of vale

If there is no shock wave (for example, for the upper surface
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of a plate or, in certain cases for the profile), the density must

be determined from the equation of the adiabatic curve:

P/P= (Pa/P.)"' -(p8/p) 0 .75. (1.47)

If the flow expands behind the shock wave, we initially deter-

mine the density behind the shock wave from Formula (1.46), and

then by means of the equation of the adiabatic curve we determine

the density at the surface being investigated.

The air temperature at the limit of the boundary layer will be

found from the characteristic equation:

T,/T. = (Pa/P..) (P./IP). (1.48)

Making use of the fact that the flow-retardation temperature

does not change even in the presence of compression waves, we ob-

tain:

Taking into consideration that x = 1.4, we find:

MI=5 [(T-4.) (I +O,2M.)- I1. (1.49)

Formula (1.40) and the values of the coefficients in this for-

mula correspond to a wing of infinite span. However, this formula

can also be used in the determination of the pressure on a straight

wing of finite span for that part located outside the Mach end cones.

At the ends of the wing the pressure drops linearly along the

span; moreover, at the very end, the excess pressure equals zero.

Hence, it is not difficult to determine the pressure at any point

inside the Mach end cones.

In the case of aerodynamic heating the case in which the lead-

ing edge of the delta wing becomes "supersonic" is of particular in-

terest; in this case the excess pressure is greater than on a wing

with a "subsonic" leading edge.
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For a very thin wing (a plate), the excess pressure on the sec-

tion lying outside of the Mach cone emanating from the peak of the

triangle forming the wing will be (see [26], [27]):

. 2

where X is the sweepback angle of the leading edge; for the section

of the wing lying inside the Mach cone, the pressure will be less

and expressed as:

Pic2a r1-- arcsin t~ _______

Pic £1 tg2 I X 1 i' i _ I -(tg2 ) (ZIX2

where x is the coordinate along the flow, while z is the coordinate

perpendicular to the plane of symmetry (the origin of the coordi-

nates is at the apex of the triangle).

For a wing of infinite span, with a very thin profile (a plate),

the excess pressure according to the linearized theory is

-2a

The greatest heat flows are developed on a delta wing in the

section lying outside of the Mach cone. The pressure on this sec-

tion of the wing may be determined from the formula

PKA -

while calculating the value of kw from Formula (1.40).

It should be noted that as the Mach number increases, the cor-

rection factor approaches unity.

Thus, when M = 5 and X = 600, this factor equals 1.07, while

when M = 10, it equals 1.015. The latter formula may also be used

for the determination of the pressure on a sweptback wing, i.e., on

that section of it which lies outside the central Mach cone.

The formulas presented here together with the formulas given
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in § 1.2 enable us to find the heat-transfer coefficient on a flat

plate as well as on a thin wing, if the angles of incidence are rela-

tively small.

In § 3.1 we give an example of the determination of the heat-

transfer coefficient on the profile of a wing.

It should be noted that the presence of pressure and tempera-

ture gradients on the surface (for example, on a curvilinear profile)

increases the error in the determination of the heat-transfer coef-

ficient; moreover, this error increases as the Mach number increases.

The heat transfer on a cylindrical surface with an axis parallel

to the flow may be determined from the formulas for a flat plate,

if the thickness of the boundary layer is substantially less than

the curvature radius of the surface. The applicability criterion for

the theory of a flat plate for a cylindrical surface may be expressed

in the following inequalities:

for a laminar boundary layer x/R < 0.02 Re1/2 ,  (1.50);

for a turbulent boundary layer x/R < 0.3 Rel/ 5 ,  (1.51).

The heat-transfer formulas for a flat plate may also be used

for a cone; however, the local values of M6 , p6, and T6 should corre-

spond to the flow past the cone and the conical nature of the flow

should be taken into consideration.

Because of the conical surface not all of the gas streams

at the surface have identical lengths of contact with the surface.

The streams beginning at the point of the nose have the greatest

lengths of contact with the surface. Other streams are shorter, since

they approach the surface at some distance from the point of the

nose. Thus, while determining the heat transfer or the frictional

coefficient at a given point of the cone, it should be borne in mind

that the mean length at which particles of gas in the boundary layer
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are subject to the influence of viscosity forces will be less than

the length of' the generatrix.

Consequently, in using the heat-transfer formulas for a flat

plate in the determination of the heat transfer on a cone, we should

find the Reynolds number from the given length xpr which depends on

the length of the generatrix x and the structure of the boundary

layer. In the case of laminar boundary layers xpr/x = 1/3; in the

case of' turbulent boundary layers x pr/x = 1/2 (see [5], [301).

To deterinine the parameters of the flow at the surface of the

cone, let us introduce the similarity parameter for conical flows

(1.52)

where 0k is in radians.

Using the denotations of Fig. 1.6, according to N.F. Krasnov

([10], p. 258), we will have:

p. 2,09 (I + 0,143), (1 .53)

where

±pV2 ,(1.54)

2) To determine the remaining local

parameters of the flow at the limit
of the boundary layer, it is neces-

sary to take into consideration the

nonisotropic change in the flow with

the transition through the compres-

sion wave; these changes depend on

Fig. 1.6. Diagram of the sym- the angle of inclination Js of the
bols of the parameters of the
flow about the cone. 1) Com- surface of the compression wave and
pression wave; 2) cone.

M.. The angle of inclination of the

compression wave according to N.F. Krasnov ([10], p. 249), is deter-
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mined from the following formula

#8.=- 1,093- 0,06 (7-)/l'I, (1.55)

Formula (1.53) and (1.55) are approximations of the exact solu-

tion and may be used with a sufficiently high accuracy for 0.5 < < < ,

Mo > 2.5, and 3k < 30.

If we know the angle of inclination for the compression wave,

we can determine the relative pressure behind the discontinuity ([10],

p. 37):

pp =! (7. sin' 8,- 1). (1.56)
6

The density of the air behind the compression wave is found from

the Hugoniot equation

p. PC- .+6 (1.57)

The transition to the density of the air at the surface of the

cone can be accomplished by means of the equation of the adiabatic

curve:

Sf1P = (P,/P,)" *-f(p, p.) (p.p.)I107 '  (1.58)

The quantity p6/p. in this equation can be determined from

Formula (1.54), using elementary transformations of this value; here

we will obtain:

P./P. ! - 1 - I+O T,7.
P (1.59)

The temperature T6 at the limit of the boundary layer of the

cone and the local M6 number can be determined from Formulas (1.48)

and (1.49), respectively.

In the case of a pointed body of revolution with a curvilinear

generatrix, the flow parameters at the point may be determined from

the formulas for a cone having an angle %kO (see Fig. 1.7). At other

points on the nose surface, the flow parameters can also be found
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approximately from the formulas for

Cka.oiom~u a cone with an angle 1k which is

bequal to the angle of inclination

of the nose surface at the given

-t point (see Fig 1.7).

§1.4. HEAT-TRANSFER COEFFICIENTS IN
THE CASE OF FLOW ABOUT FRONTAL
AREAS

The forward noses of bodies and

Fig. 1.7. Diagram of denota- the leading edges of the lifting sur-
tions for the geometric char-atiss ofr ahe oetie b- faces are related to the frontal sur-acteristics of a pointed body

of revolution. 1) Compression faces. Heat transfer in the case of
wave.

flow about frontal surfaces may be

determined from the formulas for a plate, if we take into considera-

tion the local characteristics of the flow.

With flow about rounded noses or leading edges, the blunt sec-

tion of the nose in the region of the critical point is streamlined

by subsonic flow (Fig. 1.8). On the basis of experiments (5] it was

determined that the velocity of the flow along the meridional cross

section is proportional to the relative distance from the critical

point:

V,=xV.xR. (1.60)

The geometric values of x and R are given in Fig. 1.8. The value

of the coefficient X depends on the shape of the frontal surface

and the flight Mach number. In the case of incompressible flow

(Mc = 0), X = 1.5 for a spherical nose, and for a cylindrical lead-

ing edge X = 2; when M. increases, the value of X decreases and

may be determined for a spherical nose from the formula of M.

Romig [20]:

X=O,8M; '" .  (1.61)
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This formula is used for M > 1.

Because of the large negative pressure gradient and the low

Reynolds numbers, the boundary layer must be laminar in the region

of the critical frontal-surface point. The Reynolds number for the

determining temperature, if we take into account Formula (1.60),

will be

Re* = xVs/v - x V x2/v*R.

Substituting this value of the Reynolds number into Formula

(1.30), and also substituting the value of V6 from Formula (1.60),

we will obtain the expression for the heat-transfer coefficient in

the region of the critical point of the nose:

ao= AX112Vft'! - 12 (,*p*)1I2 (Pr*) - , c;. (1.62)

Here the constant A is a function of nose shape. Using the cor-

responding numerical values given by E. Van Dreist [5], we may as-

sume the following:

for a spherical nose ....................... A = 7.5

for a circular cylindrical nose ............ A = 5.6

The determining temperature at the critical point may be deter-

mined from the formulas for the deceleration temperature and from

Formula (1.6); taking into consideration the fact that in the case

under consideration T6 = TO, where

we get:

Ts - To- 0,5 (.r- T.,) - 0,22 (1 - r) (To- T.).

To determine the air density at the body surface from the deter-

mining temperature, we first determine the pressure behind the com-

pression wave in the region of the critical point. From this pres-

sure, we find the density of the air behind the compression wave

and then from the adiabatic equation and the characteristic equation
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we make the transition to the density of the air in the case of the

determining temperature.

For a spherical or straight cylindrical nose, the pressure be-

hind the compression wave may be found from Formula (1.56), if we

assume that Os = 900. The density Ps behind the compression wave is

determined from the Hugoniot equation (1.57). The transition from

this density to the density p6 at the surface can be made by means

of the adiabatic equation (1.58). The sought value of the air density

for the determining temperature may be found from the characteristic

equation:

= (pa/pc) (p/pa) = (pa/pc) (T,1*).

In determining the heat transfer on the leading edge of the wing,

it should be borne in mind that the sweepback of the wing decreases

heat transfer. In approximate terms, this decrease in the heat trans-

fer may be determined from Fig. 1.9 (see [24]). In selecting the

sweepback, it should be borne in mind that a very large sweepback

(greater than 700) decreases the critical Reynolds number.

1) 2) _% #J
00

2) CnputDvawmtL

Fig. 1.8. Diagram of flow about Fig. 1.9. Influence of the sweep-
a round nose. 1) Compression back of the wing on the heat trans-
wave; 2) zone of subsonic flow. fer at the critical point of the

leading edge. 1) (a with sweepback)/
/(a without sweepback); 2) sweep-
back, deg.
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If a rounded nose is streamlined by a laminar boundary layer,

the heat transfer at the critical point will be at its maximum. How-

ever, if the boundary layer at the nose becomes turbulent, the maxi-

mum heat transfer will be in the vicinity of the point with the local

number M6 = 1 [21].

§ 1.5. FACTORS INFLUENCING THE TRANSITION FROM A LAMINAR BOUNDARY

LAYER TO A TURBULENT BOUNDARY LAYER

The structure of the flow in the boundary layer may be laminar

or turbulent. In the case of a laminar boundary layer, the frictional

resistance is substantially less than in the case of a turbulent

boundary layer. The decrease in the friction of the laminar boundary

layer decreases the heat transfer, and consequently, the temperature

of the surface also.

As an example Fig. 1.10 gives steady-state temperatures of the

wing surface in the case of laminar and turbulent boundary layers

when M, = 5. It is apparent from the graph that in the case of the

laminar boundary layer, the temperature of the surface is 200 to

2350 lower than in the case of a turbulent boundary layer. At higher

values of M , the temperature drop across the surface in the case

of a laminar boundary layer will be even greater.

Thermal shielding of the structure is one of the most effective

methods of ensuring a laminar sti ucture for the boundary layer. The

laminarization of the boundary layer also decreases the frictional

resistance and, by the same token, decreases the weight of the engine.

If there are no factors producing turbulence in the nose sec-

tion of a streamlined body, the nose section will generally be stream-

lined by a laminar boundary layer. The transition from a laminar

boundary layer to a turbulent boundary layer at subsonic flight velo-

cities depends on the Reynolds number, and on a flat plate with a
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zero angle of incidence, this transition generally takes place at

Rekr = 5.105 [33].

At supersonic flight velocities, as experiment shows, the

boundary layer becomes turbulent at higher Reynolds numbers.

rC.O The cause of turbulence in a
M \boundary layer is the instability of

Soo -the laminar boundary layer at high

Reynolds numbers. In connection with

Sthis, the random velocity pulsations

in the boundary layer are not at-

9 29 4050 s0 IM I%
3)rxoa Kmoo tenuated but are developed and cause

Fig 1.10. Temperature of awig surfacerwit aronamc the turbulence of the boundary layer.wing surface, with aerodynamic

heating. 1) Turbulent boundary Time is required to develop the turbu-
layer; 2) laminar boundary
layer; 3) wing chord; M = 5,
H = 30 km, a = 100, e = 0.8, lence and the disturbances, and con-
F = 0.03. sequently, the Reynolds number for

the initial turbulence is greater than the Reynolds number for the

initial steady-state motion.

The source of the disturbing pulses is usually the turbulence

of the exterior flow, roughness, undulation, and other disruptions

of smooth flow about the surface. By decreasing the disturbing

pulses, we increase the time required for the development of the

turbulence, and consequently, increase the critical Reynolds number

for the transition from a laminar to a turbulent boundary layer.

For example, by decreasing the turbulence of the flow through the

use of damping grids we succeeded in obtaining a critical Reynolds

number of Rekr = 3.106 in addition to the usual value 5.105 [33) on

a flat plate at subsonic velocities.

Although it might have been assumed that the viscosity forces

in the boundary layer would be a stabilizing factor, in reality they
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reduce the stability of the laminar motion. In this a basic role

is played by the nature of the change in the velocity through the

thickness of the boundary layer; in the final analysis it is the

nature of this change which is determined by the viscosity forces.

If the wall cools the boundary layer, for example, by means of

its heat capacity or radiation, the density of the air at the wall

is increased and, by the same token, the kinetic energy referred to

the volume is increased. This increases the stability of the boundary

layer.

Figure 1.11 illustrates the nature of the change in the tempera-

ture and the density of the air through the thickness of the boundary

layer. Curves MN'P' and AB'C' correspond to the adiabatic wall,

while curves MNP and ABC correspond to the wall which is cooling

the boundary layer. In the section BC, the density is increased and

this increases the stability of the boundary layer.

OSS

Fig. 1.11. Temperature distribution and air den-
sity through the thickness of the boundary layer.

With supersonic velocities and real walls there is always heat

transfer from the boundary layer, although this is the result of the

radiation of the wall. Consequently, the critical Reynolds numbers

at supersonic velocities are substantially greater than the critical

Reynolds numbers of the subsonic section.

L. Lees [47] showed theoretically that by cooling a wall stream-
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lined by flow, we can completely stabilize the boundary layer of

the supersonic flow, i.e., the critical Reynolds numbers may be

made higher than those used in practice. In these cases the practi-

cal criterion of stability will not be the Reynolds number, but the

relative wall temperature Tst/T6 or T st/T r .

E. Van Dreist calculated the required relative temperatures of

the wall for total stabilization of the boundary layer at various

Mach numbers [52].

Figure 1.12 shows a graph of the stability limits according to

E. Van Dreist: the regions within the curves B, C, and D correspond

to the laminar boundary layer [5]. The ratio of the ordinates of the

curves B, C, and D tothe ordinate of the curve A characterizes the

degrce of required cooling for total stabilization of the boundary

layer.

8 10 12 Aftm

Fig. 1.12. Limits of the total stabili-
zation of the boundary layer according
to E. Van Dreist. 1) Cone; 2) plate;
3) in flight; 4) in a tube; 5) laminar
boundary layer.

The region above the stability curves do not necessarily cor-

respond to the turbulent boundary layer. For these regions the transi-

tion from the laminar boundary layer to a turbulent boundary layer

will be determined by the Reynolds number.

Notwithstanding the great number of theoretical investigations

of boundary-layer stability, the mechanism of the transition of a
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laminar boundary layer Into a turbulent boundary layer has not been

completely discovered as yet. As a result, the determination of the

critical Reynolds numbers by theoretical means is not yet possible.

Ieto-o The experimental data have not been
6

adequately systematized; moreover,

4 -M F - there is a great divergence in the

R =a- 2result of various experiments. This

is explained by the various condi-
0 0,05 0,15 0.24 0,52

TgfM/m 8 %5 tions under which experiments have

Fig. 1.13. The influence of been conducted and, in particular, by

flow turbulence on the criti- the fact that the flow turbulence,
cal Reynolds number of a flat
plate at subsonic velocities. the roughness of the models, and the
1) Turbulent region; 2) tran-
sition region; 3) laminar re-
gion; 4) turbulence in % of pressure gradient are not considered
flow velocity, in many of the experiments.

The extent of turbulence can be seen from the experiments on

the determination of the critical Reynolds numbers on a plate when

M < 1 [12]. In these experiments the flow turbulence was changed

and the formation of a temperature gradient was excluded. The re-

sults of these experiments are given in Fig. 1.13, whence it is

apparent that depending on the magnitude of the turbulence, the

critical Reynolds number may change within a wide range. We should

also note the fact that with a turbulence of 0.08%, Rekr = 3.106 is

almost reached; this is six times greater than the critical Reynolds

number ordinarily assumed for a plate in a subsonic region.

We should also devote some attention to the experiments carried

out in order to determine the critical Reynolds numbers on the cone,

said experiments carried out by E. Van Dreist in a wind tunnel [531. The

cone being tested was cooled from within by means of liquid and gaseous

nitrogen; in this manner it was possible to determine the critical
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Reynolds numbers for various degrees of cooling. The test results are

presented in Fig. 1.14. Curves A, B, and C correspond to the limits of

total stability (see Fig. 1. :2). Curves A', B', and C', passed through

the experimental points, represent the limits above which the boundary

layer becomes turbulent.

A'

10--

I,

S 3

AL  , [  M-,7S •YCMo04u8ocmb

4 I1,2 2,6 3,0 39111

Fig. 1.14. Limits of stability for the boundary,
in accordance with experiments carried out on a
cone be cooled in a wind tunnel. 1) M6 = 2.9;

Re 6 /meter - 2.13"107; 2) M6 = 2.7; Re /meter

2.4"107 ; 3) M 6 = 3.65; Re6/meter = 1.97.107;

4) insulated walls; A) total stability.

We should note the fact that the Reynolds numbers for the experi-

mental points shown in Fig. 1.14 correspond to the end of the transi-

tion (buffer) zone between the laminar boundary layer and the turbulent

layer. In accordance with measurements of wall temperatures in the des-

cribed experiment, the difference in Reynolds numbers between the begin-

ning and the end of this transition amounts approximately to 2.106.
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For a comparison against other experiments, curves A', B', and C'

have been constructed again in Fig. 1.15, where M 6 has been selected

as the argument, and the degree of wall cooling - characterized by the

ratio Tst/Tr - has been chosen as the paramenter. For an adiabatic wall

Tst/T = 1; in the case of wall cooling, Tst/Tr < 1. The cooling of the

surface increases the critical Reynolds numbers, particularly for M 6 < 3.

Re ' to-$
7o 0 OA ja&1Jo nepxo, 3 o Ao1o A .,wonepex oa 2 4 aOpaeemw-

I 1\ I 1 !1 5 0 pakema I m
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Fig. 1.15. Critical Reynolds numbers for
the transition from the laminar to the
turbulent boundary layer, according to
experiments carried out both in a wind
tunnel and in flight. 1) Beginning of
transition; 2) end of transition;
3) cones; 4) V-2 rocket; 5) Viking 10
rocket; 6) plate; 7) solids of revolu-
tions; 8) in flight; 9) in wind tunnel.

In Fig. 1.15 the experimental points obtained during flight tests

of cones and rockets have been plotted, as have the experimental points

obtained in tests of plates and solids of revolution inwind tunnels (441,

(22]. The values of the critical Reynolds numbers, obtained in these ex-

periments, show significant scattering, but on the average (for the end

of the transition) are close to the critical Reynolds numbers obtained

by E. Van Dreist (see the curve for Tst/T r = ')'

The factors responsible for this divergence between various
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experiments cannot be ascertained with a sufficient degree of accuracy;

however, it should be pointed out that the magnitude of the critical

Reynolds number determined during the experiment can, in addition to the

factors indicated above, be affected by the method employed to deter-

mine the beginning and the end of the transition from the laminar to

the turbulent boundary layer. As was pointed out above, the turbulence

of the stream has a significant effect on the critical Reynolds numbers.

In the experiments used for the preparation of Fig. 1.15, the turbu-

lence of the air varied, and is completely unknown for a number of cases.

For M6 > 2 in the case of Tst/Tr 1 1, it can be assumed, on the

average, that the beginning of the transition occurs at Re6 = 1.5.10 ,

6and that the end of the transition takes place at Re6 = 3.5.10 . The

last value corresponds to the Van Dreist curve for M > 3.0. The dif-

ference between the above-indicated Reynolds numbers corresponds to the

difference obtained in Van Dreist's experments [53].

Note should be taken of the fact that the critical Reynolds num-

bers for plates and solids of revolution, according to the cited ex-

periments, show no pronounced dlvergence and can therefore, in approx-

imate terms, be assumed to be identical.

Very few experimental data with respect to the critical Reynolds

numbers are presented in the literature for the case of M > 4. The fol-

lowing experiments might be cited. In the GALCIT (USA) [Guggenheim Air-

onautical Laboratory, California Institute of Technology] wind tunnel.

it was found that in the case of M = 5.8 the laminar boundary layer on

a plate is preserved to Reynolds numbers of 5.5.106. In this case, the

laminar boundary layer was extremely stable [8]. In flight tests (No. 27)

of the V-2 rocket it was found that at M = 4.2 the beginning of the

transition from the laminar to th.e turbulent boundary layer takes place

at Re. = 2.5"106 L44].
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M. Bertman found in experiments with cylindrical bodies in a

wind tunnel at M = 6.9 that the critical Reynolds number may range from

1.2.10 to 4.5'10 , depending on the thickness of the leading edge; in

this case, with an increase in the thickness of the leading edge the

critical Reynolds number increases. The above-mentioned critical

Reynolds number of 4.5.106 corresponds to the Reynolds number calcu-

lated on the basis of the leading-edge thickness and is equal to 3.10 4

[38].

The above- enumerated experiments at M > 4 demonstrate that with

great M(ach) numbers, the critical Reynolds numbers do not diminish

and lie approximately within the same range as in the case of M < 4;

therefore, for M > 4 the same critical Reynolds numbers can be employed

as in the case of M < 4.

In the case of surface cooling, i.e., for Tst /Tr < 1, the critical

Reynolds numbers Re6 will increase as a result of the reduction in vis-

cosity and the increase in density at the surface of the wall. In approx

imate terms, it may be assumed that the critical Reynolds numbers are

inversely proportional to Tst/Tr. This is completely confirmed by the

Van Dreist experiments for the case of M > 3.5, said experiment shown

in Fig. 1.15. For M < 3.5 the effect of cooling will be more pronounced,

but the cooling itself caused by thermal radiation, will not be great.

In the case of great M(ach) numbers, the quantity Tst/Tr can be

substantially reduced and in this connection we can anticipate a pro-

nounced increase in the critical Reynolds number. However, in actual

fact, with the cooling of the boundary layer the displacement thickness

of the boundary layer diminishes and at a certain cooling ratio the re-

duced displacement thickness may become close to the height of the

roughness protuberances. In this case, any further cooling of the bound

ary layer will not only fail to increase the critical Reynolds number
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but will actually cause it to drop, since the roughness is one of the

significant factors resulting in the instability of the boundary layer,

particularly if the roughness exceeds the displacement thickness. This

phenomenon may be referred to as the reversal of the cooling effect.

The presence of a pressure gradient along the flow has a pro-

nounced effect on the critical Reynolds number: in the case of a pos-

itive pressure gradient, the critical Reynolds numbers diminish,

whereas in the case of a negative pressure gradient, they increase.

With a negative pressure gradient the following pressure is exerted on

an elementary portion of air having a volume dxdydz

-0 dx dy dz,dx

which accelerates the motion of this portion of air. The decelerating

force of friction, acting on this same portion of air, will be:

PV A...{1 Kdx dydz.

-0, IL 1 /p=_P.no e-i. o ', The negative pressure gradient coun-

0 0 - teracts the decelerating effect of the vis-

02 2r- .. cosity forces, as a result of which the sta-

cc =so bility of the boundary layer is increased.

In the case of supersonic velocities,

0,2 0,4 0,6 U.S 1 significant negative pressure gradients are

formed on certain types of wing profiles and

Fig. 1.16. Distribution nose-parts of airframes, and these gradients
of pressure over theoeicuare pofe ofe a enhance the stability of the boundary layer.lenticular profile of a

wing. M = 2.13; C = 1.1; Figure 1.16 shows, as an example, the pres-
Re = 6.4. 105; 1) Upper
surface; 2) lower sur- sure distribution over the lenticular pro-
face.

file of a wing at M = 2.13 (31]. We can see

from the cited graph that with small angles of attack the negative
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gradient covers almost the entire cord of the profile.

The influence that the pressure gradient exerts on the critical

Reynolds number can be determined in approximate terms on the basis of

the kinetic-energy balance of the boundary layer. To simplify the der-

ivation of the corresponding relationships, we will assume that the

velocity of the flow and the pressure gradient along the surface are

constant, which is close to the truth for thin profiles in the case of

small angles of attack, as well as in the case of elongated nose sec-

tions.

We choose the displacement thickness 6* as the parameter which

characterizes the thickness of the boundary layer in the case of a pres-

sure gradient. The energy introduced into the boundary layer per unit

time as a result of the pressure difference along the flow will be

E,=-v . A 6 dx.
dx0

For a compressible fluid, the displacement thickness is equal to

(see [48])

?dv& )dy

On a flat plate, for the laminar boundary layer, in an incompress-

ible fluid (see [33])

T,-I __, (1.63)

In a compressible fluid, the displacement thickness can be found

by introducing into Formula (1.63) the ratio of the shape parameters

and the densities:

(1.64)

Here p aad Re are calculated for a definite temperature.

The shape parameter
H= I, (1.65)
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where 6 is the thickness of momentum loss. For the laminar boundary

layer in an incompressible fluid (see [33],(48])

H-/=2,59,

and in a compressible fluid (see [48])

+ 1, 2( i)+ ,4(-T-1 (1.66)

Expression (1.64) was derived on the basis of Formulas (1.25) and

(1.28) and the following relationship (see [48])

Substituting the value of 6*sz h into the expression for Ep in ac-

cordance with Formula (1.64) and assuming the quantity (Hszh/H) (p*p*)i/;

to be constant along the wall, we will obtain:

£,- -1,72 V&i' 3 C_ -- xdx H Pa -.

The energy of the viscosity forces absorbed by the boundary layer

per unit time will be

E,~~=Ic .c, pVdx.

Taking into consideration the value of cf szh in accordance with

Formulas (1.25) and (1.28), we will obtain:
X

Ep,-o,332 (p*p*)II I x-'Idxswp&VIC, .X.

The energy lost in the boundary layer will be:

_X'\ "I-

According to Formulas (1.25),(1.28), and (1.64), we will find:

- f x.
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Let us make the following denotation:

,PaV 
(1.67)

so that

+I Hw 6 X) xPsV. (1.68)

Let (Rekr)O be the critical Reynolds number for the given flow par-

ameters at the wall, without any effect due to the pressure gradient,

and let (Rekr)p be the critical Reynolds number, with the pressure gra-

dient having been taken into consideration. The value of (Rekr)p will

be set equal to that Reynolds number at which the energy losses in the

boundary layer will be equal to the energy losses in the boundary layer

for which the effect of the pressure gradient has not been taken into

consideration. Denoting the quantities which correspond to the flow with

a pressure gradient with the subscript "p," and the quantities corres-

ponding to a flow for which the effect of the pressure gradient has not

been taken into consideration with the subscript "4" we will have the

following for the critical numbers:

(E)-E,p=(E,)*.

Let us substitute the value of E from Formula (1.68) into the

last expression:
OfCP+ I H..u d (, ' C.,X)o"

Since the quantity cf szh is inversely proportional to x1 / 2 ,

(P + ±H, !Pis P-1 (1.69)

From this expression we can find the sought value of Xp and the

ratio x,/Xo, which correspond to the critical Reynolds numbers, with

(Rep -,P
(RC.,P) Xo (1. 70)

In order to simplify the determination of Xp, a graph constructed

in accordance with Formula (1.69) is presented in Fig. 1.17.
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Fig. 1.17. Graph for the determination of the
critical length x pin the presence of a pres-
sure gradient as a function of the critical
length x 0 for a flow without a pressure grad-
ient.

For an experimental verification of Formula (1.69) we will present

A it in a different form for the M < 1 case. Let us introduce the Pohlhau-

sen parameter

__dp 12

dx pV&

The thickness of the boundary layer at whose boundary the velocity

differs from the streamline velocity by 0.1% (see [331, page 118), will

be equal to 6x

tnd consequently

18 - X.
dx

Taking into consideration that for the case M < 1 the value of

H = 2.59, Formulas (1.69) and (1.70) can be presented in the following

form: (Rep)p( -0,048)'.
(R ewh (1 71 )

Figure 1.18 shows a comparison of Formula (1.71) and the experi-

mental data derived in a subsonic wind tunnel [12].
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Fig. 1.18. Comparison of theo-
retical and experimental values
of relative critical Reynolds
number in the presence of a pres-
sure gradient.

§1.6. FEATURES OF HEAT TRANSFER IN THE CASE OF HYPERSONIC VELOCITIES

In the case of hypersonic velocities (M > 5) certain mechanical,

physical, and physicochemical phenomena develop at the surface of the

body past which the flow is moving, and these phenomena change the

physical parameters of the air and may either be endothermic or exo-

thermic reactions.

The dissociation, recombination, and ionization of the air can be

included among such phenomena. Moreover, as a result of the increase

in the displacement thickness of the boundary layer in the case of hyper.

sonic velocities, the increasing pressure of the flow at the surface

of the body begins, in this case, to exert a pronounced effect on heat

transfer.

The above-mentioned phenomena are of great significance for heat

transfer in the case of M > 10.

In the case of air dissociation produced by high air temperature,

molecules of oxygen 02 and nitrogen N2 depompose into atoms, and in

this case a substantial quantity of heat is absorbed. For example, at
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M = 20, the temperature of an ideal gas not subject to dissociation

must be 17,5000 C in back of a normal shock wave, and for the case of

a real gas, taking into consideration the absorption of energy for dis-

sociation, at an altitude of 50km the temperature will be only 65000 K.

For oxygen, total dissociation sets in at 6,000°K, and for nitrogen, at

10,000°K [7].

1,0 Nopocmb nogema

os .. 2Km.ce.-

.6 ir/caV
ONj6h, AA'M' d7A&

KMex H =60.YKf

0,2 78 Kmlcol(

or - "! 1 I I I I

1 2S 5 10 10g 10u CTC #/  4

Fig. 1.19. Relative gas-kinetic specific
heat flow as a function of the rate of air
recombination. i1) Flight velocity, 2.4km/
sec; 2) "Pyrex"; 3) oxides, metals; 4)
ustCm/sec.

Since the wall-surface temperature in the case of hypersonic vel-

ocities will always be lower than the air temperature behind the shock

wave, an inverse process - the recombination of the atomic gases - may

take place at the wall. In this case, thermal energy will be liberated.

Below, we present some data on the effect that dissociation has on heat

transfer at the critical point of a blunt body.

The quantity of heat liberated in the case of recombination is a

function of the rate of recombination which, in turn, is determined by

the concentration of atoms at the surface and the catalytic properties
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of the wall. Figure 1.19 shows thc theoretical relationship between the

relative specific heat flow to the wall (I = qu/qu = 0) and the rate of

recombination ust at the wall [8]; the radius of nose curvature in this

case is assumed to be 0.5m and the wall temperature is taken as 7000K.

It follows from the cited graph that with recombination rates in

excess of l03 cm/sec, the effect of recombination on heat transfer be-

comes close to the maximum and is a weak function of any further in-

crease in the rate. In the case of an infinite recombination rate, heat

transfer will be almost the same as in the case in which there is no

dissociation [28], i.e., the recombination almost completely offsets

the effect of dissociation.

Conversely, at rates of recombination below 10 cn/sec, its effect

is insignificant and heat transfer as a result of dissociation may dim-

inish substantially as, for example, with a flight velocity of 7.8 km/se

this drop will be greater than by a factor of three.

The rates of natural recombination (without catalysts) are quite

low. If atoms impinge on the wall, the rate of recombination may in-

crease manyfold. In this case, the wall acts as a catalyst.

The catalytic properties of the wall are a function of the material

of which the wall is made. Metals yield higher rates of recombination,

whereas for nonmetallic walls the rates of recombination are substan-

tially lower. Figure 1.20 [8] shows the rates of recombination for oxy-

gen and nitrogen at walls made of various materials; these rates were

derived experimentally. There is little data on rates of recombination

and therefore the graph shows curves as well as individual points

(circles) and approximate areas (large circles with chemical denotations

of elements.

A comparison of the curves shown in Figs. 1.19 and 1.20 shows

clearly that a metallic wall will receive only slightly less heat than
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at which recombination takes place at an infinately great rate. It

should be borne in mind that with an increase in temperature the rate

of the catalytic reactions also increases; this can also be seen from

Fig. 1.20. Therefore, in first approximation, dissociation need not be

taken into consideration in the case of a metallic surface.
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Fig. 1.20. Catalytic properties
of various materials in recombin-
ation of air atoms at the wall.
1) KC1; 2) LiCl; 3) "Pyrex" glass;
A)'Pyrex' glass.

In the case of a wall made of a glass-based material, the reduc-

tion in the transfer of heat may be significant, since the rates of

recombination in this case will not be great.

Chlorides, oxides of metals, and certain other nonmetallic mater-

ials will yield intermediate heat-transfer values. It should be pointed

out that since with an increase in wall temperature the rate of recom-

bination increases, a comparatively slight drop in heat transfer with

respect to the transfer of heat in the case of an infinite recombina-

tion rate may be permitted for the group of materials under consider-

ation.

In the case of flow past plane and cylindrical surfaces, the
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phenomena of dissociation and recombination take place under somewhat

different conditions than in the case of flow past the area close to

the critical point. The theoretical investigations of heat transfer in

the case of a laminar boundary layer show that the effect of dissoci-

ation on heat transfer in this case is not too great [19].

Given high temperatures, characteristic in the case of hypersonic-

velocity flow past bodies, the atoms and molecules of the air, in

addition to dissociation, will also be subject to ionization. Given the

air temperatures that prevail about a body flying through the atmosphere

at hypersonic velocities, the degree of ionization will not be great.

For example, with M = 20 approximately 1% of the air will become ionized

(see [3]). This degree of ionization has little effect on heat trans-

fer.

Although for M < 25 the effect of ionization on heat transfer is

insignificant, it maybe important in the case of radio communications

[21].

In determing heat transfer, it is necessary to know the tempera-

ture difference Tr - Tst [see Formula (1.7)]. On the other hand, the

specific heat of the air is included in Formula (1.29) in order to de-

termine the heat-transfer coefficient. The product of these two param-

eters must characterize the change in gas energy as the gas is cooled

from a temperature of Tr to the temperature Tst.

In the case of hypersonic velocities, it frequently becomes neces-

sary to deal with an extremely great temperature difference T r - Tst in

which range the specific heat of the air may undergo pronounced change.

Therefore, instead of the following product

(T, -Tr) c'.

it is more effective to introduce the enthalpy
r

i=) c.dr (1.72)
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and to express the specific flow of heat during aerodynamic heating in

the following form:
- Y(- I.), (1.73)

where

a, =gs*c ,* Va. (i. r-4)

The value of the heat-transfer coefficient ai may be determined by

means of Formulas (1.30), (1.31), (1.32), (1.39), and (1.62), if the
*

quantity cp in this formula is removed.

The enthalpy value for various temperatures can be found from Fig.

1.21 (see [481).

Formula (1.62) was derived for the determination of heat transfer

at the critical point of a rounded nose. In the case of great hypersonic

velocities, a structurally simpler formula may be employed; this form-

ula was derived on the basis of experiments carried out in a wind tunne]

(see [41]):

4 fp\2,6 - IfV31b _, 
1

0 - (1-75)

where Vkos is the first cosmic velocity at the ground equal to Vkos = 7.

km/sec.

L 200 Z8o 32003500 J6000T1/( Since in the derivation of FormulE

0,.28 -- - (1.75) we have taken into consideration

42 the experiments that were carried out

-, -- at hypersonic velocities all the way t(

0,2.4 --- -- - -rcosmic velocities, the effect of the dJ

I F-1 - sociation and recombination of the air

0 400 800 7209 '7OO 00 T'K
has, therefore, been accounted for in

Fig. 1.21. Enthalpy of air, re-
ferred to temperature, as a this formula. The experiments which
function of air temperature.

served as the basis for this formula

were carried out with glass "pyrex" models, ard this material exhibits

weak catalytic properties (see Fig. 1.20). However, the transfer of hea
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in these experiments was measured by means of calorimeters which con-

sist of platinum plates placed into the stream (see [49]). We can see

from Fig. 1.20 that platinum exhibits high catalytic properties (Ust >

l03 cm/sec), and therefore Formula (1.75) yields the transfer of heat

for the surfaces that exhibit the greatest recombination rates.

The enthalpy value i0 at the critical point may also be derived on

the basis of the fact that all of the kinetic energy in the decelerated

flow is converted into thermal energy. Then

i.. "=1+1,2.10-4V2, (1.76)
427g

where i. is the enthalpy of the air in an undisturbed flow; this value

of the enthalpy, as well as ist and i300 can be found from Fig. 1.21.

Because of the existence of the boundary layer, the main stream

is deflected from the wall by approximately the displacement thickness

(see[48]). With great hypersonic velocities, the displacement thickness

of the boundary layer shows a pronounced increase, and this results in

an increase for the angle of inclination of the limit of the displace"-

ment thickness, and consequently it leads to an increase of pressure in

the stream and at the wall. The increased pressure results in increased

air density which, in turn, produces an increased heat-transfer coeffic-

ient.

The increase in pressure produced by the boundary layer can be
*

determined by assuming the boundary layer, having a thickness 6 szh' to

have solidified. In this case, a flat plate will be similar to a profile

exhibiting maximum thickness at the trailing edge.

The local angle of inclination for the limit of the boundary layer,

corresponding to the displacement thickness, will be
dl:-- . (1. 77)
dx

This angle is added to the local geometric angle for the flow; in
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the case of a cone, the half-angle of the cone flare increases by the

angle Atp.

The value of the derivative in Formula (1.77) is easily determined

for a plate with a laminar boundary layer by Formula (1.64):
PIX. (1.78)

dX 2

Hence we can see that with an increase in the displacement thickness

there is an increase in the local angles of stream inclination.

Having determined the value of 6p, the formulas presented in §1.3

can be used to find the heat-transfer coefficient, making provision for

consideration of the pressure produced by the boundary layer. As a resull

of the increase in pressure, the air parameters for the boundary layer

change, and this produces a change in the displacement thickness. There-

fore, in order to increase accuracy, second-approximation calculations

can be carried out. However, in the case of Mo < 15 and Re > 105, one

approximation is sufficient.

The influence exerted by the boundary layer on pressure is a strong

function of the Reynolds number. Figure 1.22 shows the graph for pres-

sure at the surface of a flat plate in the case of two Reynolds numbers

with respect to Mo numbers. We can see from the graph that for Re0 > 106

the effect of the boundary layer on pressure is not great.

The boundary layer exerts a significant effect on the pressure in

the case of low Reynolds numbers. Therefore, it is particularly impor-

tant to take into consideration this effect in the case of flights at

great altitudes, as well as in the determination of heat transfer in the

area of the leading wing edge or close to the pointed nose of a cone.

The boundary layer is generally turbulent for Re, > 106, and there-

fore its effect on pressure is not great.

Since the effect exerted by the boundary layer diminishes with the

increase in the Reynolds number (Fig. 1.22) a negative pressure gradient
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can be observed along the surface. This will enhance a rise in the

critical Reynolds number.

The heating of the air behind the shock wave increases the intens-

ity of air radiation. At near-cosmic velocities, the intensity of radia-

P tion from the air behind the normal shock

pas wave is so great that it can sometimes pro-
* zq

duce a radiant energy flux that impinges

20- - - on the forward surface and is of the same

is " order of magnitude as the heat flows which

• -iOeccur as a result of aerodynamic heating.

The importance of this radiant-energy

flux in the over-all transfer of heat re-

Re lot sulting from the increase in flight veloc-

o 4 8 12 M 2M,0 ity exhibits an extremely rapid rise. In-

Fig. 1.22. Relative pres- deed: if the specific convection heat flow

sure at surface of plate
at a = 0, said pressure at the critical point of a blunt-nose
arising as a result of body is approximately proportional to
the boundary layer.

the heat flow ql of radiant energy emitted by the air beind the shock

wave is approximatly proportional to (see [16])

q1 ~.p.,RV*.

We can also see from the last relationship that the radiant heat-

ing being examined here will increase with a drop in altitude, and this

will take place more intensly than aerodynamic heating. It is also char

acteristic that with an increase in the radius of nose curvature the

aerodynamic heating is reduced and radiant heating increases.

The gases included in the composition of the air do not radiate in

an identical manner, and so the importance of the radiation from the

various components of the air changes with temperature and density. For

- 55 -



example, at a temperature of 8,0000 K, i.e., characteristic of the air

behind the shock wave, in the case of near-cosmic velocities a great

role is played in the total radiation by nitrogen monoxide NO which is

formed at high temperatures in the air, and molecular nitrogen N2 is

also extremely important. At a temperature of 12,0000 K, characteristic

of velocities close to the second cosmic velocity, molecular nitrogen

and nitrogen monoxide dissociate and the primary emitters are the atoms

and ions of nitrogen and oxygen.

The thickness of the emission layer which, in first approximation,

can be assumed to be equal to the distance between the shock wave and

the critical point, exerts great influence on the intensity of air rad-

iation. The distance between the shock wave and the critical point, in

turn, is a function of a number of factors including the radius of nose

curvature, the density of the air, and the degree of dissociation.

In connection with the great number of factors which affect the

radiation of the air behind the shock wave, a purely theoretical deter-

mination of the emissivity of the air behind the shock wave is extremely

complex and none too reliable. For this reason, experimentation plays

a more important role. At the present time, these experiments are being

carried out in wind tunnels.

It was found in the experiments that were carried out that given

a nose radius of 0.3 m, and M = 20 and at altitudes of the order of 30

km, radiative heat transfer will amount approximately to 10% of the tota

heat flow to the critical point (see [13]). A similar result was obtaine

by R. Meyerott [16] in his theoretical determination of radiation for

a nose having a radius of curvature of 0.6 m at V = 7.5 km/sec for an

altitude of 37 km.

However, at greater flight velocities the heat flow due to the rad-

iation of the air may exceed the convection heat flow. For example, in
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accordance with calculations carried out by K. Gezli and D.D. Messon

during a vertical ascent into the atmosphere at a velocity of 10.7

km/sec of a sphere having a radius of 0.46 m, at altitudes between 30

and 40 km the heat flow due to radiation was greater approximately by

a factor of two than the convection heat flow (see [16]).

A rough estimate of the heat produced by the radiation of the air

behind the shock wave and absorbed at the critical point of a blunt-

nosed body can be obtained in accordance with the following formula:

q.=L- 1,6. 1 P ). Vn. (1.79)

This formula was derived on the basis of an evaluation of calcu-

lation values from the approximate functional relationship presented

above. This formula can be employed for the determination of the limits

of applicability for Formulas (1.62), (1.73), and (1.75). If the value

is of the same order of magnitude as qo according to the cited formula,

where if the value is greater, then it is evident that it is impossible

to determine heating by means of the aerodynamic heating formulas alone.
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Chapter 2

RADIATIVE AND ABSORPTIVE PROPERTIES OF BODIES

§2.1. THE BASIC LAWS OF RADIATION AND THE ABSORPTION OF RADIANT ENERGY

The significance of radiation in the general thermal balance depends

on the surface temperature and the magnitude of the exterior heat

flows. With aerodynamic heating in flight at velocities of M < 3,

the significance of surface radiation is comparatively slight; how-

ever, it should be considered. In the case of a flight in which M > 5,

radiation may be considerable; here, radiation may be the most effec-

tive means for reducing surface temperature.

For instance, in the example of aerodynamic heating discussed in

§3.1 where M = 5 at an altitude of 30 ki, the temperature of the sur-

face at a distance corresponding to 10% of the wing chord, in the ab-

sence of radiation, would equal 8600 C, while as a result of radiation

it is reduced to 3800C, i.e., by 480c0 . When flight velocity increases,

the radiation required to reduce surface temperature is increased.

The heat of radiation in the case of a steady-state thermal regime

has the greatest influence on the surface temperature, whereas in the

case of aerodynamic heating

In the case of a nonsteady-state regime of aerodynamic heating, the

influence of radiation decreases, since,

For space vehicles, radiation is the only practical method of

dissipating the heat of radiant solar and planetary energy absorbed by
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the surface of the craft. Using the radiation, we may also dissipate

the heat given off by the electronic equipment.

Also of great cignificance for space craft is the reflective

capacity of the wall, since the amount of the absorbed radiant energy

from the sun and planets depends on the magnitude of this reflective

capacity.

The radiation of an absolutely black body obeys Planck's law;

(2.1)

where E is the intensity of the monochromatic radiation; X is the

wavelength of the radiation; T is the absolute temperature of the ra-

diating body.

If the letter E denotes the total energy radiated per unit body

surface per unit time, then

E (2.2)

The constants c1 and c2 in Eq. (2.1) are equal to (see [41)

cI = 8.85 • 10
- l O kcal • m2 /sec; c2 = 1.44 • lo

- 2 m • deg.

The integration of Eq. (2.2) simultaneously with Eq. (2.1) en-

ables us to find the radiation energy of an absolutely black body;

the radiant energy is

E T(2.3)

154 2

where a is the Stefan-Boltzmann constant, equal to

13 6 l"12 kcal/m 2 sec. deg.

Real bodies are not entirely subject to Eq. (2.3). The magnitude

of their radiation is less than the radiation of an absolutely black

body, so that for a real body

E = qiz = eaT

where s is the emissivity or blackness coefficient and e < 1.
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The radiant energy falling on the surface of the body is com-

pletely absorbed only in the case of an absolutely black body. Real

bodies either reflect or admit a part of the incident energy, or

they go through both processes simultaneously. The relation between

the absorption and radiation capacities is established by the Kirchhoff

law.

If E> is the emissivity for a given spectral wave, and PX is the

absorption coefficient for the same wave, equal to a portion of the

absorbed energy, then in accordance with the Kirchhoff law, at a

given surface temperature

The coefficients of intergral radiation and absorption at a given

surface temperature do not equal one another and depend on the spec-

tral composition of the radiated and absorbed energy. The value of

these coefficients may be defined as the mean integrals, using Eq.(2.3);

C i J
0

E;1 A 05 T (2.5)

Here, the subscript "1" is used to designate the magnitudes of the

body being investigated, for a surface temperature TI, while the sub-

script "2" is used to denote the magnitudes of the source of radiant

energy absorbed by the body at temperature T2. The values of E 1 and

EX2 may be determined from Formula (2.1).

The intensity of the monochromatic radiation E has a maximum for

each temperature. As an example, Fig. 2.1 gives the curves of the values

of Ex/(EX)max for 60000K (temperature of sun) and 1000°K; these curves

were constructed according to Formula (2.1). It is apparent from the
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graph that when the temperature of the surface increaues, the maximum

measurement intensity is shifted to the shorter waves and becomes more

pronounced.

108

T- 1000°K 0,8

0,6 -
T=6000-le6

0- 0,4 12

qz
1N____0

9 z 6 8 A 0 2 4 8 8 iOAK

Fig. 2.1. Relative intensity Fig. 2.2. Coefficients of mono-
of the radiation of an abso- chromatic radiation as a function
lutely black body as a func- of the wave-length for nickel
tion of the length of the alloy and ceramics. 1) ceramic
radiation wave and the temp- A-417/235, T = 760 to 1000'C; 2)
erature of the body. nickel alloy, T = 7600 to 800C.

The ratio between the surface temperature of an absolutely black

body and the wavelength X at maximum radiation intensity is determinedm

by Wien's law which may be obtained from Eq. (2.1) by differentiating.

According to this law

.= 2-98 (2.6)

where m is measured in microns. Wien's law enables us to estimate the

wavelength in the region in the region in which the radiation intensity

is greatest.

Solids can be classified on the basis of their radiant and absorp-

tion properties as conductors of electric current, insulators, and

semiconductors. Metals are associated with the conductors, while ceram-

ic material such as plastics, lacquers, paints, etc., are associated

with insulators.

Conductors and insulators radiate and absorb radiant energy in
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various ways. Conductors exhibit low emissivity at normal temperatures.

while insulators exhibit high emissivity. Conductors and insulators

vary in the spectral composition of radiant energy: in the case of

conductors radiative capacity is most important in the shortwave region,

while in the case of insulators radiative is most important in the

longwave region. As an illustration of this, Fig. 2.2 gives the co-

efficients of monochromatic radiation for metal and ceramics as func-

tion of wavelength; these coefficients were obtained by experiment [401.

§2.2 EMISSIVITIES FOR VARIOUS BODIES AND SURFACE CONDITIONS

The temperature of the surface can have a considerable influence

on the radiative capacity of a body. Metals, as was indicated in §2.1,

have low emissivity in the case of long waves. However, when the wave-

length decreases, the emissivity of metals increases. If we take into

consideration the fact that according to Wien's law the wavelength of

maximum-intensity radiation decreases with an increase in the surface

temperature, the integral radiative capacity of metals should increase

with temperature. This is confirmed by experiments.

Figure 2.3 (see [401) gives the curves of the integral emissivity

for heat-resistant alloys (lower curves). As can be seen, at tempera-

tures higher than 6000 C, the increase in emissivity can be considerable.

The integral-radiation coefficients for some metals are given

in Table 2.1; this table also gives the temperature ranges of the ex-

periment and the corresponding ranges of the change in emissivity.

It is also apparent from Table 2.1 that as the temperature in-

creases, emissivity increases.

Emissivity for metals depends on their electric conductivity. The

best conductors have lower emissivity. We can see from Table 2.1 that

good conductors of electricity, such as aluminum, gold, copper, and

silver, have low emissivity.
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AO 4oe.pxcnmb OkUC)7H
Hou t =c1150°

04- HeMU MH O

floge XrOmb

400 500 800 700 t V

Fig. 2.3. The influence of
the surface temperature on
the coefficient of integral
radiation from heat-resis-
tant metals. 1) stainless
steel; 2) nickel-cobalt al-
loy; 5) stainless steel; 6)
nichrome; A) oxidized sur-
face with t = 1150 C; B) un-
oxidized surface.

It is possible to coat a metal with lacquers or paints which are

poor conductors of electricity and heat.

In this case, the emissivity increases sharply and approaches

unity.

Table 2.2 gives the emissivity for certain paint coatings.

It should be noted that although certain paint coatings are white,

their radiative capacity is close to unity. This is explained by the

fact that their good reflective capacity (and consequently, poor ra-

diative capacity) is manifested only in comparatively short wavelengths

corresponding to the range of visible radiation. These coatings radiate

infrared rays well. This same phenomenon may also be found in the case

of certain other dielectrics. For example, at 20°C, the emissivity

of chalk is 0.81 [91, for gypsum, it is 0.90 [17], and for glazed
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TABLE 2.1.

Integral Emissivity for Some Metals (see [171)

1 tameHoaaHe to C

2 A.1iio0S.IH noaRpOaHHbA 225-575 0,039+0,057
3
)4 Keae3o noa1poaaoe 425+1C20 0,144+0,377

)Ke.ieao .'uAToe Heo6pa6oTawioe 925-1115 0,87-0.95
CTa3.Abioe JIlTbe noAiposaaoe 770+1040 0,52+0,56

6 CTa.ab .111CToBaR w.1l11osanHta 940 1100 0.,55+0,61
7 iepaBeiontan cTaAb 1401 480.-800 0,22-+-0,575
8 Hue.b qICrTlU, nOJ!Hpoa1HMA 225--375 0.07-0,087
. Xpo.M 100- 1000 0,08+0,26

0 HiIpom [401 480+800 0,19+0,35
.1"1 HIIte.lb-xo6aJtbTOBbflA chas [401 450+800 0,25+0,65
.12 LUHHn (9-,l %), nOJIHpOBSuaHbA 225-325 0,045-0,053
13 OusuIoaaaoe AICTOBOe xee3o 28 0.228

.14 3 0AOTo noJIHpoaaaIHoe 225-635 0,018+0,035
'15 Aieb noAitpoa.iaua, saeXTpoAHTHa 80+115 0,018+0,023

16Cepe6po noaHpoBaHuoe, 'i¢Toe 225- 625 0,020-0,032
17 fAaTaItIa naJHPaoaHHan, qHcTa& 225+625 0,054 0,104

18 BpoH3a Wm.H4oBa1Ha 1431 . 65 0,04
19 BpOH3a nopacrai 143] 75-175 0.57

20Moaa16eH [ I  600+1000 0,08 0,13
21 Mo.116ACH 11] 1500+2200 0,19+0,26

I) Item; 2) polished aluminum; 3) polished iron; 4) crude
cast iron; 5) polished steel casting; 6) sheet ground steel; 7) stain-
less steel [40]; 8) nickel, pure; 9) chrome; 10) nichrome [40];
11) nickel-cobalt alloy [40]; 12) zinc (99.1%), polished; 13) zinc-
plated sheet iron; 14) polished gold; 15) polished copper, electrolytic;
16) polished silver, pure; 17) polished platinum, pure; 18) ground
bronze [4j]; 19) porous bronze [43]; 20) molybdenum [11]; 21) molyb-
denum (11l

porcelain it is 0.92 [17].

The use of paint coatings is limited because they are stable only

to comparatively low temperatures, e.g., heat-resistant enamel 101/19

and black asphalt lacquer are stable when subject to extensive heating

to 250°C. Heat-resistant enamel with an aluminum coating is stable

approximately to 400°C; however, aluminum paints have a low emissivity

E = 0.35 [171. The addition of aluminum powder has a telling effect.

We can use the oxide films of certain metals as heat-resistant

coatings which have high radiation capacity. For example, iron oxide
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TABLE 2.2.

Emissivities for Certain Paint Coatings

CJ.TepaTyp. 2
Ti nIOKPbITHS 1 0o C a HCTOq-

HIHK.

34 JTaK 6eimaf 40+9.5 0,80 0,95 [171
5 jax qepibAtf MaToemL 40+95 0,96+0,98 [171
6 .la' 4epHbift 6,iecTgmULH 25 0.87 [171

1a:eA.ITOBNAn aaK 80 0.93 1361
M Iejinasc qeptual MaToSlUt 74-145' 0.91 [171
Macasumbe Kpacim pa3AqIHX ZneeToB 100 0,92+0,96 [17)
3.aAeeaa Kpacica 20 0,85+0,95 1361

LOCawa aamnosag (0.075 mm. It 6oJue) 40+370 0,94 [17)
LlCaxa C JW, KM CTeKJ OM 100+185 0,96 0,95 [171
L2A 1io.rHneea xpacKa 150-315 0,35 [17J

1) Type of coating 2) literature source; 3) white lacquer;
4) dull black lacquer; 5) bright black lacquer; 6) bakelite lacquer;
7) dull black shellac; 8) oil paints of various colors; 9) enamel
pain; 10) lamp black (0.75 mm and more; 11) carbon black with liquid
glass; 12) aluminum paint.

in the temperature range from 500 to 12000C exhibits an emissivity

which ranges from 0.85 to 0.95; the emisivity of nickel oxide in the

temperature range from 650 to 12550 C ranges from 0.59 to 0.86 [17].

The use of metal oxide films to increase radiation capacity is

advantageous in that they are easy to apply, while the cohesion

strength with metal in the case of a thin layer is substantial. The

simplest method of obtaining a film involves the preliminary heating

of a metal and keeping it at a high temperature in air for several

minutes.

Figure 2.4 shows the emissivity curves for stainless steel at

various temperatures as functions of the oxidation temperature. The

tested specimens were kept at the oxidation temperature for fifteen

minutes. The graph given in Fig. 2.4 was constructed on the basis of

experimental data given In work [40].

It is apparent from the graph that the oxidation of stainless
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steel at 500 C for fifteen minutes increases the emissivity approximate-

ly to e = 0.9. This is also true for a number of other alloys (see

Fig. 2.3).

While the oxide films are effective

in the case of those metals indicated in
Tewnepo mypa]

Ic Fig. 2.3, they are not as effective with

8 8001C others. For certain metals, even though

SooC the oxide film does increase the radiation,

04 'emissivity remains very far from unity.
For example, in the case of an aluminum

02 1.DO low 1200 C

TCMnepdaym alt e" oxide film, obtained by means of soaking
Fig. 2.4 The influence of at 6000C, the emissivity is increased by
the oxidation temperature
on the emissivity of stain- a factor of approximately three, but the
less steel. 1) Radiation
temperature; 2) oxidation value of this coefficient is still small;
temperature.

for the temperature range from 200 to

60000 this value ranges from 0.11 to 0.19 [17].

Table 2.3 gives the emissivities for a number of metals with oxi-

dized surfaces. For comparison, the emissivities of these same metals

with aonoxidized surfaces are also given in this table.

The emissivity increases as the surface roughness increases. If

the height of the roughness tubercles is several times greater than

the radiation wavelength the emissivity esh of the rough surface as a

function of the emissivity s of a smooth surface, may be expressed by

the following formula;

s=a11+2,8(1-t)2j. (2.7)

The structure of this formula is theoretically derived from

Lambert's law, according to which the quantity of radiant energy at an

angle - to the normal is proportional to cos t.
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TABLE 2.3.

The Effect of Oxidation of a Metal Surface on its Radiation Capacity

ae C Jlreparyp.

HauenJomaie 1 JCHII HC?'Oq-
HHK 2

3 Cralb AHTa noApoJlaHlHas 770+1040 0,52+0.56 1171
4Ca. b OKHCJIHHa alpit 600" C 200+600 0.80 [171
5 Hepcameeomax CTab 480 800 0,22+0,575 [40J
6 HepwaoeIuas CTaAb, oKmcjemian npn 450+840 0,43 0,63 [401s0o C

7 HepeaBeJowaa craAtb, omicaernas npH 480+970 0,62+0,73 [401
1000 ° C

8 -IepmaeeiomaR czaab, oMcaeias npu 480 1150 0,85+0.96 [,4011,50 C

H"JI-KeIb nOAJipOaaHHMuN 225+375 0,07 0,0871 1171
'lhiKe.lb, OkHcAeliIHfl ,ip 6000 C 200". 600 0,37+0,48 [17)

1.Hifxpox 480-h00 0,19+0,35 [401
± Ifxposf. oiN1cAc111imii npia 1150 0 C 480 1150 0,75+0,90 [40]

1 r.FKe.1b-K o6a.1bT0onA f ciUa• 450+800 0,25+0,65 [40]
n-IIKeAb-xo6aJbTosuA cn.ao, oKHcenni 450-1150 0,85-0,98 [401
nPH 1150* C

15.1IosM3iiU io.miporaJiIR 225-575 0,039+0,057 [17)

16.1'O.IHIul, onc ienm.il npii 6000C 2C(0+600 0,11+0,19 (171
lr.eb no.7upoBaraa .80-.115 0,018+0,023 [171

\leab, oxKicae.n.as np 6000C 2J0 600 0,57+0,87 [171
9laryH b maTmag 50+350 0,22 [171
0laryH.. oKcAeitaR ip. 6000 C 200-600 0,6110,59 (171

11INK noAHpoaHsbIlA 225+325 0,045+0,053 [171
?2llHx, owicAiuCHl npH 400* C 400 0,11 [171

1) Item; 2) literature source, 3) polished cast steel;
4) steel oxidized at 600C; 55 stainless steel; 6) stainless steel
oxidized at 8000C; 7) stainless steel oxidized at 1000°C; 8) stainless
steel oxidized at 11502°C; 9) polished nickel; 10) nickel oxidized at
600°C; 11) nichrome; 12) nichrome oxidized at 1150°C; 13) nickel-
cobalt alloy, 14) nickel-cobalt alloy oxidized at 11500 C; 15) polished
aluminum; 165 aluminum oxidized at 6000 C; 17) polished copper; 18)
copper oxidized at 6000C; 19) dull brass; 20) brass oxidized at 600°c;
21) polished zinc; 21) zinc oxidized at 4000 C.

The coefficient 2.8 was determined on the basis of experiments.

Figure 2.5 gives the results of an experimental check of Formula (2.7).

The radiation capacity of porous bodies is substantially increased,

since each pore may be looked upon as an absolutely black body. For

example, porous bronze in the temperature range from 75 to 1750 has an

emissivity of s = 0.57, while ground bronze without pores at 650 has
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an emissivity of s = 0.04 [43].

At the present time, broad distribution has been given to lami-

nated plates, which together with good structural properties possess

superior heat-insulation properties. With respect to radiation capacity,

they behave like all other dielectrics, i.e., they have high emissivity

at temperatures lower than those which characterize their heat resis-

tance.

Laminated plates are based on binding substances, generally resins

and fillers. In laminated plates with high mechanical properties, we

use fiberglas, glass fabric, asbestos fabric, cotton, or silk. Table

2.4 gives the emissivity of certain filler materials. We can determine

the radiation of resin from the emissivity of bakelite lacquer, which

is given in Table 2.2. As can be seen from Table 2.4 (and also Table

2.2), the emissivities of the materials forming the laminated plates

are close to 0.9.

- Hd3Gvw&&'L4Off fl"O'b 41
-- 7 o Au p (7"

Fig. 2.5. The effect of
roughness on the emissi-
vity. 1) Experimental
points; 2) nichrome;
3) nickel-cobalt alloy;
4) stainless steel; 5)
brass; 6) aluminum.
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TABLE 2.4.

Emissivities of Filler Materials for Laminated Plates, etc.

1 JI Tepy
taHueHouaie 0C HC TO4

HCT04H"X

43 Ac6eCosa 6yara 40-370 0,93+0,95 [171
yMara OrcXau, Haimeenual Ha meraa- 95 0,89 [17
atqeC XHA-iICr

5 epeao 70 0,91 (361
eCTeaO 20+100 0,94+0,91 [li]

8 CTexAo 250+1000 0,87.0,72 [11]

Ctexao 1100+1500 0,70+0,67 [111
9 Yrob 100+600 0,81+0,79 [1I]
1ornnc 20 0,8+0,9 [11

1) Item; 2) literature source; 3) asbestos paper; 4) thin
paper giued to a metal sheet; 5) wool; 6) glass; 7) glass; 8) glass;
9) carbon; 10) gypsum.

§2.3. ABSORPTION COEFFICIENTS FOR VARIOUS BODIES

In the case of flight at very high altitudes (higher than 150 km)

and in the case of cosmic flights, a basic source of heat is the sun.

In this case, as will be shown further in §3.3, the basic parameter in

determining the temperature of the wall is the relation of the absorp-

tion coefficient to the radiation coefficient (emissivity), that is,

P/s [see Formulas (3.9), (3.10), and (3.11)]. Let us note that 0 cor-

responds to the solar radiation spectrum while s corresponds to the

spectrum of infrared rays at the temperature of the wall.

Because of the selective nature of the absorption capacity, the

ratio P/e will be located in a broad range of values. Figure 2.6 gives

the coefficients P of monochromatic absorption for certain polished

metals depending on the length of absorbed radiant energy (see [15]

p. 241). It is apparent from the graph that the absorption capacity of

metals for the energy of solar rays with maximum intensity (the wave-

length is 0.5 P) increases greatly in comparison with the absorption

capacity, and consequently with the radiation capacity (the Kirchhoff
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law). For infrared rays corresponding to the possible temperature of

the wall (the wavelength of a ray with maximum intensity is 6 to 8 ).

In the case of metals with very good electric conductivity (silver,

copper, gold) there is a sharp increase in the absorption coefficient,

which begins at wavelengths of approximately 1 4. For other metals,

the absorption coefficient increases gradually as the wavelength de-

creases.

2 j 4 5 1 Mm

Fig. 2.6. Coefficients of monochromatic

absorption of various metals. 1) silver;
2) gold; 3) copper; 4) steel; 5) alumi-
num; 6) nickel; 7) steel; 8) chrome; 9)
nickel.

The integral absorption and radiation capacities are determined

to a significant degree by coefficients corresponding to absorption

and radiation at the wavelength Am of maximum intensity.

Table 2.5 gives values of the ratio 0X/s 1 , found from Fig. 2.6;

In addition, PA2 was determined at N = 0.5 ±, while e was deter-

mined at X = 7 4.

It is characteristic of metals that the ratio 0 2/'Xl is greater

than one. Silver has the lowest value of 0/'Xl and gold has a

higher value of P /E1l; however, in the region of maximum absorption

intensity (Xm = 0.5 0, the absorption coefficient for gold drops
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sharply and consequently, the integral coefficient of absorption will

be lower than the value indicated in Table 2.5. The same applies to

copper. For example, for gold at X = 0.7 , OX2 = 0.06 and, consequently,

OX2/'-Xl = 2. 4.

TABLE 2.5.
The Ratio of Absorption and Radiation Coefficients (Emissivity) for
Maximum-Intensity Way livnlth ..

1 2 P2  2 ,i 4

Cepe6po 0.06 0,025 2,4

XpoH 0.31 0,05 6.2

5 A 1 OMiHt 0,35 0,05 7.0
6 'CTaJIb 0.48 0,05 9.6

7 MeAb 0,38 0,625 15,2
8 Hieb 0.40 0,025 16,0

9 3ojioro 0.60 0,025 24,0

i) Metal; 2) 2 at X 0.5 ; 3) silver; 4) chrome; 5) alu-

minum; 6) steel; 7) copper; 8) nickel; 9) gold.

It should be borne in mind that a finely pollshed surface lowers

the value of the ratio P/s in comparison with its value for ordinary

polishing. Actually, in the case of fine polishing, the average height

of roughness tubercles will be 0.1 to 0.5 p, while in the case of or-

dinary polishing it will be 0.5 to 6 p. During the transition from

ordinary polishing to fine.polishing, the radiation coefficient (emi-

ssivity) hardly changes, since in relation to the wavelength of the

radiation (-7 p.), the surface in the case of both ordinary and fine

polishing will be smooth. As concerns the coefficient of absorption,

the surface with ordinary polishing with respect to the wavelength of

maximum absorption intensity (Xm = 0.5 P) will be rough, since the

height of the roughness tubercle will be several times greater than

the wavelength (I to 12 times greater). Therefore, the absorption

coefficient in the case of fine polishing should be lower than in the
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case of ordinary polishing, and consequently, the value of the ratio

P/s should be lower.

To shield against solar-ray heating we may use a dielectric sur-

face coating which has high emissivity and a small solar-energy ab-

sorption coefficient.

In particular, it is possible to use a paint coating. Table 2.2

shows that the emissivity e of paint coatings is on the average equal

to 0.9, while the absorption coefficient of white paint for example

ranges from 0.12 to 0.26. Consequently, the ratio P/e will range from

0.13 to 0.3.

Certain materials have very low absorption coefficients when

emissivity is of the order of 0.9. For example, gypsum has an absorp-

tion coefficient of 0.05 to 0.10, while magnesium oxide even has an

absorption coefficient of 0.1 to 0.2.

Table 2.6 gives the absorption coefficient of certain materials

at room temperature.

TABLE 2. .
Coefficients of the Integral Absorption of Solar Energy of Certain
Materials

I IAUTCpST'ry '  2
1 Maepmaa ____COH__X •

3 A.1uoI11itid nomnposaIHHMA 0,26 [171
AAIoMHHIfA MaoMA 0.38 121

5 e~tb no.ulposaHa 0,26 1171
6 KeAe3o nOAHpoiaHHOe 0,45 117j
7 8 )Ke.ae30 oxHcaieNUoe 0.74 1171

)KeAe3o OUHKsoaHnoe 0,66 1171

0Ipacxa 6cna 0.12+0,28 (17J

IKpacxa 'lepHan 0,97+0,99 [17J

a.lioM esan xpacxa 0.35+0.40 121
Ili;e au ap~opoan 3MaA:, 0.25i0.35 121

1 3 rHnc 0.05+0.10 121

jrOXHCb Mar.n (-a-roma) 0,01+0,02 12]

SyMara Ua 0,27 1171
166ymara -aTMacKaI 6eaau 0,15+0.20 [21
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Key to Table 2.6. 1) Materials; 2) literature source; 3) polished alu-
minum; 4) dull aluminum; 5) polished copper; 6) polished iron; 7) oxi-
dized iron; 8) iron; 9) white paint; 10) black paint; 11) aluminum
paint- 12) white porcelain enamel; 13) gypsum; 14) magnesium oxide
(dull); 15) white paper; 16) white Whatman paper.

Manu-
script [List of Transliterated Symbols]
Page
No.

58 q = qiz = qizluchayemyy = qradiated

58 qa = qa = qaerodinamicheskyy = qaerodynamic

58 qHar = qnag = qnagrev = qheating

66 em = Esh = %sherekhovatyy = Srough
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Chapter 3

THE TEMPERATURE OF THE WALL DURING A STEADY-STATE THERMAL PROCESS

§3.1. THE TEMPERATURE OF THE WALL WITHOUT INTERNAL COOLING

The steady-state thermal process is characterized by a tempera-

ture which is constant with respect to time at any point of the flow

and of the streamlined body. This process is of interest in the case

of a long flight with constant velocity at constant altitude or in the

case of space flights at sufficiently great distances from the earth

or from another planet.

In the case of the steady-state thermal process, the equipment

is not heated and consequently qnag = 0. When there is no cooling of

the inner surface, the thermal-balance equation (1.13), with consid-

eration of Formula (1.11), will be:

q111=q+q q13q1=O. (3.1)

Here the temperature of the wall will be constant with respect

to its thickness. This is the temperature at which the heat flows

approaching and leaving the plating reach a state of equilibrium.

Consequently, this temperature is called the equilibrium temperature.

The heat loss qt along the surface is produced by a temperature

gradient along the surface; for a cylindrical surface with the length

1 from the generatrix perpendicular to the flow, the quantity of heat

given off per second will be:
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where x is the distance from the investigated point.

The quantity of heat entering the same surface element will be:

Here "l" indicates the cross section through which the heat enters,

while "2" indicates the cross section through which the heat exits. if

the distance between cross sections is dx, then

A [(_ o\ ).P 11,,
a x I, (-W hiOT

ldx 6X2

It is apparent from the formula obtained that the heat loss

through the cross section of the plating will take place when the

temperature gradient along the chord is not constant. Substantial

losses may be observed in the vicinity of the pointed leading edge, at

the nose of the cone, at the point at which the transition from a

laminar to a turbulent boundary layer takes place, and at the places

where the streamline profile is bent.

Since the heat-transfer coefficient and the recovery factor in

qa ,and also the emissivity in qiz' depend on the temperature of the

wall, we can most conveniently determine the latter graphically. For

this purpose, two or three values of Tst are given and we find qnag

from Formula (3.1); then we construct qnag from T st, and taking into

consideration the fact that qnag = O, we find Tst.

The number of points for the determination of qnag is taken de-

pending on the available possibilities of obtaining the necessary

accuracy for a preliminary evaluation of Tat. For example, if T r <

< 5000K and there is no cooling, the temperature of the wall in the

majority of the cases will be only somewhat less than the recovery

temperature; consequently, we may give two values of Tst differing
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from each other by 30 to 50'. If the preliminary estimation of Tst can

be made only with an accuracy of several hundred degrees, we must cal-

culate three, and possibly even four values of qnag'

It should be noted that the wall radiates from two sides; how-

ever, the radiation of heat from whithin the structure in the case of

a steady-state thermal process will be compensated by the absorption

of the heat radiated by the structure or the opposite wall. Consequent-

ly, Formula (3.1) should take into consideration only one-sided rad-

iation.

In order to make more clear the above method for determining the

temperature of a streamlined surface in the case of a steady-state

thermal process, we give below an example of the determination of the

temperature of the lower wing surface.

The data derived are as follows: M = 5, H = 30 km, and a = 100,

the profile is lenticularc = 0.03, chord length is 8 m, and surface

emissivity is s = 0.8. This calculation is for the lower surface.

We will determine the coefficients cI, c2 , and c3 from Fig. 1.5;

for M = 5, they will be c1 = 0.41, c2 = 1.22, c3 = 1.92. The angle

of surface inclination for the profile at the leading edge in relation

to the chord is kO = 2 = 0.06. The angle between the lower surface

of the leading edge and the direction of the flow

r +0o=0,175+0,06=0,235.

The pressure behind the compression wave is determined from Formula

(1.40):

pK =C1 + Cy2+ Cf 3 , , 885.

Hence, from Formula (1.59) we find:

pt/p. 1 + O,7Mt. =4,3.
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Let us determine the relative density behind the compression

wave from Formula (1.57):

-PC +5 M =2,6..

i.

Table 3.1 gives the calculation formulas and the numerical cal-

culations for the flow characteristics along the surface of the profile.

To determine the temperature of the surface, we calculate qnag

for two given temperatures and then graphically or analytically we find

Tst (from the linear function between qnag and Tot) at which qnag = 0.

For a laminar boundary layer, we assume surface temperatures of 650

and 700 0K while for a turbulent boundary layer we assume tomperatures

of 700 and 8500 K.

To determine the temperature of the adiabatic wall, let us find

the Prandtl number. From r1 = 0.83 we determine the temperature of the

adiabatic wall according to Formula (1.1) for a laminar boundary layer

and for the average M = 3.66 and T6 = 3.53:

TTa (1 +0,2r.M,)=1130K;

then from Formula (1.6) where T = 7000K, we find the determining

temperature:

7 = T + 0,5 (T,- a) + 0,22 (r,- T&) - 697" K.

From Fig. 1. 1, let us find the Pr value for the obtained determin-

ing temperature (according to Van Dreist):

Pr'=0,684.

Similarly, for a turbulent boundary layer, from rt = 0.89, for

average M 6 = 3.87 and T 6 = 325
0K we will have:

T,=190'K, T'=703"K H Pr*.0,684.
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At other wall temperatures, the Prandtl number changes very

little. With Tst = 6500K in the case of a laminar boundary layer,

Pr* = 0.683; when Tst = 8500K in the case of a turbulent boundary layer,

Pr* = 0.688. This change in the Prandtl number, in accordance with

Formulas (1.4) and (1.5), has very little influence on r1 and rt. In

this connection, the found values of Tr are used as constants for fur-

ther calculations.

It should be borne in mind that since the braking temperature does

not change when the local flow characteristics change, the Prandtl

number may be taken as constant for all points of the surface; con-

sequently, we may assume that the temperatures of the adiabatic wall

calculated above are the same for all points on the surface. The values

of cp* = 0.257 are also constant for all points on the surface (see

Fig. 1.2).

The specific radiation heat flow will depend only on the surface

temperature and consequently according to Formula (1.14) it will equal:

at a wall temperature of Tst = 6500K ......... qiz = 1.94 kcal/m 2sec

at a wall temperature of Tst = 700°K ......... qiz = 2.61

at a wall temperature of Tst 8500K ......... qiz = 5.68

The heat flow of solar radiation will have no effect on the lower

surface; the heat flows from the earth will be insignificant (fraction-

al) in comparison with the heat flows from the aerodynamic heating

and radiation and they may therefore be neglected.

The beginning and the end of the transition of the laminar boun-

dary layer into a turbulent boundary layerare roughly determined at

first on the basis of a visual estimate of T t/Tr = 0.7. Then, accord-

ing to the data given in §1.5, the critical Reynolds number for the

beginning of the transition

Re&= (I.5.10 .2,14.10,
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TABLE 3.1.

The Determination of Flow Characteristics on the Profile

BeAmiHma x 4opuy.1a 1  
, (POP.Ap-e 3Ha'eHHA

BeArHnoO X 3aAaeuc 4 - 0 0,05 0,10 0,20 0,50 0,75 1,00

OkOKo (0 - 2.) - 0, 06 0.054 0,048 0,036 0 -0.03 -0.06

-,0" + a - 0,225 0,229 0,223 0,211 0,175 0,145 0,115

PU - I" C2'+C30(1.40) 0,1885 0,1807 0,1734 0,1586 0,1195 0,0900 0,0661

p p. - I -+- 0,7M T (1.59) 4,3 4,16 4,04 3,78 3,11 2,59 2.16

Pa/PC = (Pap.) (p./Pc)'7;5  (1.58) 1 0,980 0,957 0,911 0,795 0,694 0,611

Pa"P- (9P1) (Pc/P.) - 2,6 2,55 2,49 2,37 2.07 1,81 1,59
T - (Pap,.)(P./P) (1.48) 1,65 1,63 1,62 1,595 1,50 1,43 1,36

a - ( .~ )I ,M. -I (1 ,49) 13,2 13,4 13,5 13,7 1510 16,0 1,90

Ma - 3,64 3,66 3,67 3,70 3,87 4,CO 4,12
103 X p, - [p. (ph(p.)j X 103 - 4,81 4.73 4,61 4,39 3,84 3,35 -2,94

T - T. (TjIT.) - 357 353 351 346 325 310 294

Va - adMj - 20M& I/T' - 1375 1375 1375 1375 1395 1410 1410

ICA p a"I1,4"1O-7T4/'(T + 110)] X 106 (1.34) - 2.14 2.12 2,10 2,01 1,94 1,83

104 X v4 - (A&pJ) X 104 - - 4.53 4,60 1 4,78 5,24 5,79 6,24
10-6 x Re4 - (V4x/v4) X 10- (1, 20) - 1,21 2,4 4,61 10,65 14,6 18,1

1) The value, and formula; 2) number of formula; 3) numerical
values; 4) the magnitude x is given.

the critical Reynolds number for the end of the transition

Rea = 3. 5106 •

It is apparent from Table 3.1 that the beginning of the transi-

tion will take place at a distance approximately corresponding to 10%

of the chord, while the end of the transition will take place at a

distance corresponding to 20% of the chord.

The calculated values of qnag are given Table 3.2.From the known

values of qnag = 0. If the temperatures of the wall, which are as-

sumed in the determination of qnag, are designated as T1 and T2, and

the values of qnag corresponding to these are designated as ql and q2'

then from the linear function between qnag and Tst (for the interval
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under consideration) we will have:

(q-,q2)

The values of Tst determined from this formula are also given

in Table 3.2.

In the determination of qnag we take qt = O, since for most of

the chord length the temperature gradient is almost constant. At the

point of transition from a laminar boundary layer to a turbulent

boundary layer (at a distance corresponding to 10 to 20% of the chord),

the sign of the temperature gradient will change, as a result of which

heat flows will develop along the plating; consequently, the breaks

in the temperature curve should be rounded off.

On the basis of the temperatures obtained in Table 3.2, the crit-

ical Reynolds numbers can be made more exact.

For the beginning of the transition

LM-6's = 0,575;7,1130

for the end of the transition

Ll, = 0 =0,705.
T,.1190 0 7

Consequently, the critical Reynolds number for the beginning of the

transition

Res= .,1 2.6. 1
0,575

for the end of the transition

Re.= - = 4,96. 10.
0,705

According to Table 3.1, the points which are at distances corres-

ponding to 11 and 21% of the chord correspond to these Reynolds numbers.

The temperature values found along the chord on the lower surface
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of the wing profile are given in Fig. 3.1.

TABLE 3.2.
The Determination of the Surface Temperature of a Profile in a Steady-
state Thermal Process

Ml 04i'lc~lellcM 311a111ll1%l

BAIlwwIa n#opuyaa Op- 3nammiapttuil norpa-
uyb i t 1n1uiil C.1lopa Typ6yjiejlHufi norpainluwblfl cjiofl 4

BeajtiqrlO i 3l,8ae mc R 6 - O,5 0,10 0.20 0,0 0,76 1,0

BeiIHqIIuol T", 3aaaeucR 7 - 650 700 650 700 700 850 700 850 700 850 700 850

T -Ta+ 0.5(TcT-7&)+0,22(T,-T&) (1.6) 671 695 670 694 693 784 701 778 697 774 692 769

10 Xp=(.T&1/*)X 103 (1.33) 2,49 2,40 2,42 2,34 2,19 1,94 1,78 1,605 1,49 1,3451,25 1,123

106 XI ([1,49.10-7(T*)%/(T*+I10)], lC6  (1.34) 3,32 3,39 3,32 3,39 3,38 3,66 3,41 3,64 3,39 3,63 3,38 3,61

103 X ,*-(t1*/p)X 103 - 1,33 1.41 1,37 1,45 1,515 1,89 1,92 2,27 2,28 2,70 2,70 3,21

10-6 X Re* = (Vaxjv,) x 10- (1.20) 0,413 0,3900,804 0.7581,425 1,163 2,91 2,46 3,70 3,13 4,18 3,52

103X a1326(Re*)-'h,(Pro)-'C;/V41]X 103 (1.30) 5,70 5,65 3,98 3,95

103Xa -[0,29(Re.)-° 2(P[*)-''pcVV&I)lO (1.31) - - - - 16.8 15,5 12,0 112 9, 9,1 7,9 7,4

q, (T,-Tc,) (1.7) 2,74 2,43 1,91 1,70 8,24 5,26 5,89 3,81 4,76 3,09 3.87 2.52

qar--&a--qua (3.1) 080 -0,180.03 -0-91562 -0,42 3,2 1,87 2,.15 -2,59 1,26-3,11

Tc1 , =Ti+ qz (T2 -Ts)(ql - q2 ) ' - 691 648 840 796 770 1 743

1) Value and formula; 2) number of formula; 3) numerical values; 4) tur-
bulent boundary layer; 5) laminar boundary layer; 6) the value of x is
assumed; 7) the value of Tst is assumed.

600

.0 ,z 44 4L4 0.# 0 1

Fig. 3.1. Temperature distribution
along the chord on the lower sur-
face of the wing profile. M - 5;
H - 30 kin; a = i0; * = 0.8?.
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§3.2. THE TEMPERATURE OF THE WALL WHEN ITS INNER SURFACE IS COOLED

With a cooled wall and the coolant absorbing the specific qokh' the

heat-balance equation for small surface heat losses qt will be

(3.2)

With a cooled outer surface, the wall temperature will be constant in

width, and its determination will follow §3.1.

With an inner cooled wall surface (e.g., by circulating a liquid

coolant) the wall temperature will vary in width. A temperature distribu-

tion diagram for the wall width is given in Fig. 3.2. For generality,

Fig. 3.2 assumes that the wall consists of insulation and plating. Great

aerodynamic heat flow cools the inner surface and increased surface ra-

diation properties do not yield acceptable wall temperatures. Here, the

radiant-energy heat flow qI can be neglected, and Eq. (3.2) is simplified.

q - s- q='° (3.3)

From this we can find the outer surface temperature Ti. To determine

the plating temperature we study the insulation's thermal conductivity.

With a steady-state thermal process, neither the insulation nor the

plating are heated; consequently, the specific heat flow will pass through

any surface parallel to the outer insulation surface

dy /m 
,

specific heat flow will pass through any similar plating surface

If we assume that within the temperature difference across the width,

thermal conductivity does not depend on temperature, we will have

4" dT oxCos H q0, A.q~ const.

Consequently, the insulation and plating temperature will change

linearly in width. The temperature differences across the insulation

and plating will be

aT..- ',,l - (3.4)
A,3

(3.5)
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ature distribution along the
width of the wall in a steady-
state thermal process. 1) Boun-
dary layer; 2) insulation;
3) plating

The temperature of the outer plating surface will be

.(3.6)

Similarly, using Formulas (3.5) and (3.6), we can determine the

temperature of the inner plating surface.

§3.3. THE TEMPERATURE OF THE WALL DURING SOLAR HEATING

At altitudes higher than 150 km the aerodynamic heating becomes

insignificant and may be neglected; the equation of heat balance in

the case of a steady-state thermal process will take the following form:

qA=qH.+q,. (3.7)

If we do not take into consideration the heat flows along the

surface, I.e., assume that qt = 0, then, expanding the value of qlz

from Formula (1.14), we obtain:

1790 - (3.8)

For space craft several thousand kilometers away from the earth,

the effect of terrestrial radiation and the solar rays reflected from

the earth is insignificant in comparison with the effect of direct
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solar rays, and consequently the specific heat flows qz and qot can be

neglected. In the case of lower altitudes, the effect of terrestrial

radiation and solar rays reflected from the earth becomes greater;

however, as can easily be seen from Formulas (1.9), (1.10), and (3.8),

this effect is still quite small and these types of radiation will

increase the temperature by less than 2%. Consequently, it is entirely

permissible in a number of cases to neglect qz and qot"

If we neglect qz and qot' and take into consideration

Formula (1.8), Formula (3.8) can be presented in the following form:

Tll~7( S 58+.(3.9)

Of particular interest is the temperature for 0 = , when the

temperature is maximum; in this case, taking into consideration S and

a, we will have:

(-)() .39.5 ,--  (3. i0)

If the craft rotates rapidly about an axis perpendicular or al-

most perpendicular to the direction of the solar rays, and if the

craft has a sufficiently thick plating with good heat conduction, the

temperature of the plating may be identical over the entire surface.

The same will be true when there is heat transfer through the inner

wall. This average temperature may be found from the condition that

the total flow of solar radiation falling on a hemisphere heats the

entire surface of the sphere.

The total heat flow falling on the sphere and absorbed by it will

be:
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The total radiation heat flow

4xt2s*7!p,

where Tsr is the mean temperature of the entire surface.

From the equality of these heat flows we will find:

p= /(t)(+) s(3.11)

The value of P/e in Formula (3.11) may be found from the material

given in the §§ 2.2 and 2.3.
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Chapter 4

THE HEATING OF A WALL DURING A NONSTEADY-STATE THERMAL PROCESS

§4.1. The Temperature of a Thin Wall

In the case of a nonsteady-state thermal process, the temperature

at various parts of the body may change with time. Generally, to de-

termine the temperature of a body at a given instant in the case of a

nonsteady-state thermal process, we must solve simultaneously Eqs.

(1.13), (1.15), and (1.16). However, this solution is possible only

in certain specific cases in which a number of simplifying assump-

tions are made.

Taking into consideration the fact that generally the loss of

heat along the surface produced by the temperature gradient is small

in comparison with the heat which heats the body, we will in the fu-

ture examine the one-dimensional problems for a flat plate, i.e., let

us assume

or & or0

Let us also assume that the therinal-conductivity coefficient does

not depend on the temperature and, consequently, is constant along the

width of the plating. This is entirely permissible for metals and non-

porous insulation materials (laminar plates, ceramics), if we take the

mean value of thermal conductivity.

In the case of the assumptions made Eqs. (1.11), (1.13), (1.15),

and (1.16) may be represented in the following way:T&7. *(, .)-q,=. (4.1)
or a& (4.2)
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where a is the coefficient of thermal diffusivity.

Structures with thin walls made of metals possessing good con-

ductance are in wide use. In these cases the temperature difference

across the width of the plating may be small and we can then assume

that the plating is suddenly heated along the entire width. In §4.3

we presented a criterion characterizing the permissible constant temp-

erture along the width of the plating, i.e., the criterion of thin

shielding.

Assuming for a thin plating

let us find for the specific heat flow which heats the plating, the

expression

q., - cAbi6 di

In this case we can substitute the found expression for qnag for

the first term of Eq. (4.1): then

c~~~o~-a (T ooT0 )-q 4 -0.
(4.3)

Even though the plating radiates from two sides, in the case of

the hollow unfilled casing formed by the plating (wing, nose of the

body), as a result of the mutual heat transfer between the inner sec-

tions of the plating, the heat will not be able to escape through the

inner surface. When there is a substantial temperature difference bet-

ween the lower and upper surface, the internal radiation of the hotter

plating section will be greater than the absorption. This may be taken

into consideration by increasing the radiation coefficient (emissivity)

determined on the basis of a first-approximation calculation.

In the presence of substantial heat-absorbing masses inside the

casing, the total emissivity may be approximately determined from the
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following formula

where Tk is the inside temperature of the structure. E is the emissivity

for one side of the plating; ek is the emissivity of the inside of the

structure.

Since a and Tr in the case of nonsteady-state heating are generally

constant, Eq. (4.3) should be solved by numerical integration with

finite temperature increments

AT04,=jq.+z(T,-T 6 ).--s6o76J--&'C14.6 (4.4)

It should be borne in mind that in the case of a nonsteady-state

thermal process produced by aerodynamic heating, q, generally can be

neglected.

In order better to explain the method for determining the temper-

ature of the plating, we examine below an example for the determination

of the plating temperature of a cone with a flare angle of 200, at

a 0; the flight altitude is 15 km. The flight regime was as follows:

the flight was initially stabilized at M = 1.5; then the velocity was

uniformly accelerated for 20 seconds up to M = 4; this was followed by

a velocity decrease corresponding to passive flight according to the

law

±I I-+O',
S+ lO- 6-COOV max

where r is the passive-flight time.

Table 4.1 gives the calculation formulas and numerical calculation

of the flow characteristics at the surface of the cone (beyond the

limits of the boundary layer).

The temperature determination for an aluminum alloy plating with

a thickness of 5 mm in a nonsteady-state flight regime is given in

- 88 -



Table 4.2. The same table gives the calculation formulas. The Initial

temperature of the plating (3020) was determined from the steady-state

thermal process. The initial temperature In the given case is close to

the temperature of the adiabatic wall. The temperature of the platl~ng

was determined for a point at a distance x = 0.1 m from the nose of

the cone. The emissivity of the plating was taken as sob 0.8, the

specific heat capacity was taken as c =0.224, and the bulk weight was

taken as 'y = 2800.

TABLE 4.1.

Plating Temperature in the Case of Variable Flight Velocity

1 eatua4Opp&a 1* IO at Bpexx noaeisa 3cox.

Ve=m442+36.9t; Vm(0,85.10-3+1 IO'-l - 442 626 810 995 1180 1110 .1052 9521 870 800

Mi296 V - i.5 2,13 2.75 3.38 4.00 3,77 3.57 .23 2.95 2,71

O-M (1612) 0,262 D.372 0,481 0,591 0,700 0.659 0,624 M56 0.516 0,474

Ri-2,991 (1 + 0,14310h)?1 -(1.53) 0. 182 01045 0,0912 0,04 0,0796 0,08Jo0, 0825 0,0855 0,887 0,021

9..,lo80.67er'. (1.55) 4,113 2,843 2,265 1,040 1,738 1.8s03 1,871 2.003 2,142 2,300
sm 0,658 0,476 0385 D.332 0,299 0,3M9 0321 0.342 0.367 0.391

PC/p. $142Msn~...l (1.56) 1,00 1,03 1.14 1.30 1.50 1,42 1.37 1.26 1.203 1.142

S . + 5 re,. -)pC1P.+6) (1.57) 1,000 1,021 1,098 1,206 1,334 1,283 1,251 1.179 1.141 1,.100

p Ip-+ 0,7M.T (1.59) 1,206 1,332 1,481 1,672 1,89 1,807 1,737 1,624 1,540 1,473

(1.N6) 1.145 1,200 1,210 1.200 1,180 1,187 1.183 1,200 1.195 1,200

hip,. -pWife) (pp.) - 1,145 1,225 1,328 1,445 1,573 1,522 1,482 1,415 1,365 1.320

Tg~~~p)~.p)- 1,052 1.090 1,118 1,156 1,200 1,185 1,170 1,150 1,130 1,115

M!5(,j~( +0o,2W) ij (1.49) 1,0 r7 .2o .20 12.50 11.25 10.20 8.40 7.10 .10

1) Value and formula; 2) number of formula; 3) flight time in seconds.
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The minimum Reynolds number Re6 will be evident at the beginning

of the flight when the velocity is lowest. In this case, on the basis

of the data given in Table 4.1, we will have:

T-216,5.1,052=228; a=20 VT, --30

V,-302.1,38-416 m/secp,,1,52.10-1.

p, 1,145.0,01974 - 0,0226;
va0,7-01,Re-0,.46 5,.0.

0 .77.10-

TABLE 4.2.

Determination of the Cone-plating Temperature

3 BpeuS -oieTa C ox.

Bea .N.u. 9opuyA ,op- j
MyaM 0 10 1 012 0 4 0 8 7

Tog - 302 302 308,3 326 370 428 46 6 518 38,5 533 52

T - T. (TSIT.); T. - 216,5 - 228 236 242 250 260 257 254 249 245 242 -

T, -T (1 +10,178M0) (1. 1) 305 394 510 658 *,836 770 716 621 553 505 -

To .5,(Tel-T&)+0.22(T Ta) (1.6) 282 304 334 378 442 455 462 465 457 445 -

(pr*)-',; Pro no *Mr. 1.1 - 1,26 1,26 1,27 1,28 1,28 1,28 1,28 1,28 1,28 1,28 -

10'Xio I.11,49.I--7(T.)'/I(T.+110))X 107 (1.34)1,80 1.91 2,04 2,24 2,51 2,56 2.58 2,60 2,57 2,48 -

/"- p. (T1/T)P(pt); p. - 0,01974 - 0,0182 0,0188 0,0190 001890,0183 0,0170 0,0161D.0149 .0144 .014 -

10 X -(p p)X106 (1.35)9,9 10,2 10,70 11.85 13,7 15,10 16,0 17,45 17,90 17.5 -

V,-2OM,&./ r4 - 417 597 775 960 1140 1075 1015 915 835 768 -

10-6 < Re* - (xVl/v*) X 10-5 (1.20) 4,21 5,85 7,25 8,10 8,32 7,13 6,35 5,25 4,66 4,39 -

(Re*) - 0
. - 0,04750,04450,04250 04150,04130,0426 0,04350,045 00461 0,0470 -

4 €; no 4*xr. 1.2 - 0,240 0,240 0,240 0241 0,244 0.244 0,244 0,244 0,244 0.244 -

-.0,29(Re.*)-,2(Pr-)-'/, .CO;V4 (1. 31) 0,0323 ,0433 0,0652 ,0679 0,0780 0,0709 0,0642 0,0563 .0502, 0,0465 -

4=o(Tr-7o6) . (1.7) 0,09754,03 11,13 27,5 36,3 24.2 16,05 5,92 1,025 -1,30 -

qrn--geT (.14)0,091 0,091 0,098 .12 0,2D 0,36 0.51 0,77 0.875 0.8-

ATSa - (qa-qp)l (4.4) 0 6.3 17.7 44 58 38 50 16.5 0.5 -7 -

1) Value and formula; 2) number of formula 3) flight time in seconds;

4 according to Fig. 1.2.
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0 0 20 30 diG 30 60 4 T Ca.

Fig. 4.1. Plating temperature in
the case of variable flight veloc-
ity. (plating made of aluminum
alloy, 6 = 5 mm). 1) Temperature
of the adiabatic wall; 2) temper-
ature of the plating.

In the case of the obtained Reynolds number, the boundary layer

will be turbulent. Since, as the flight progresses, the Reynolds number

increases, it follows that the boundary layer will be turbulent for the

entire theoretical flight time.

The results of the calculation, given in Table 4.2, are repre-

sented graphically in Fig. 4.1. It is characteristic that the temper-

ature rise for the plating lags behind the temperature rise for the

adiabatic wall. This property is called thermal inertia and is deter-

mined by the heat capacity of the plating. The thermal inertia enables

us, during short-term heating, to use materials less heat resistant

than those which are required for extended heating.

In the case of flight at high altitudes, when the aerodynamic

heating is negligible or completely absent, Eq. (4.3) is simplified:

di cTS1, Igo (4.5)

If the magnitude of the absorbed radiant energy ql is constant

with respect to time, this equation is easy to integrate. Given the
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variable ql, Eq. (4.5) should be solved by numerical integration.

§4.2. TEMPERATURE DISTRIBUTION ALONG THE THICKNESS OF THE PLATING

When the thermal conductivity of the plating, or at least a

major part of it, is small, the method for determining the temperature

of the plating indicated in §4.1 may lead to very high errors. Ac-

tually, we do sometimes encounter conditions of aerodynamic heating

in which the inner surface of the plating and the adjoining layers of

materials cannot be heated substantially when, at the same time, the

outer surface may already have a high temperature and may even be melt-

ing.

To explain the heat-shielding, heat-resistance, and strength prop-

erties of the plating it is necessary to know the temperature distri-

bution along its thickness, while taking into consideration its thermal

conductivity and heat capacity. To do this we solve the Fourier equa-

tion (4.2):

e3T 62T

The following boundary conditions are assumed:

1) there is no heat transfer on the inner wall: consequently, the

temperature gradient on the inner wall should be zero:

(IT) NX (4.6)

2) the heat transfer on the outer wall obeys Newton's law; the

heat-transfer coefficient and recovery temperature are constant. In

this case we will have:

dy(4.7)

This equation is a simplified version of Eq. (4.1) in which the

radiated and absorbed radiant energy are assumed to be zero;
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3) the initial surface temperature of the plating is, in general,

constant along the thickness.

Y 
T

F 17ePaNUM,,VJ

0

Offwu7r

T8

TOT

Fig. 4.2. Diagram of tempera-
ture distribution along the
thickness of the boundary
plating. 1) Boundary layer;
2) plating.

In the integration of the Fourier equation we will, for the most

part, observe the method indicated by A. V. Lykov [143. Let us intro-

duce the dimensionless relative temperature

T::T (4.8)

where T is the temperature in any layer of the plating. Let us also

introduce the relative coordinate

(4.9)

For symbol denotation see Fig. 4.2. The Fourier equation (4.2)

for the relative temperature and relative coordinate will be:

of a of
) (4.10)

Let us find the particular integral of this equation in the form

snXzv

where X is only a function of #, while Z is only a function of T, i.e.,

xx( )-Z (3-).
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Substituting the expression for 0 in Eq. (4.10), we get

dZ :Za d2X

Since the right and left sides of this equation are independent

(they are functions of various independent arguments), evidently, each

side should equal the constant B, i.e.,

dZ .Z=B; a d2X :X B.

Let us integrate the first equation. Designating the value of Z

as Z0 for T = 0, we obtain

z=zoe,. (4. 1)

Let us designate

a

Then the second equation will be

d2X

The integral of this equation

Xrncje1 '+ce-ua'

Condition (4.6) gives:

(dX4 _0'

consequently,

Ci -=Co.

Let us designate the value of X as X for 1 = , then

,, 2c + 2c, cos k.

whence

2 cos'

consequently.
X =, X, mo (M)

Cos *
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The value of e may now be expressed in the following form

where ~ ~ ~ ' it e9 I ~~~ usk cos (k' ,0 -
where it is denoted that

Here 0 st is the relative temperature of the outer surface for

Let us express the value of B in terms o'V k; then

62

The expression in this equation

? C = ± -" -( 4 . 1 2 )
06

is the Fourier similarity criterion. This criterion is the fundamental

quantity determining the temperature of a body in a nonsteady-state

thermal process.

Expressing e in terms of k and the Fourier criterion, for the

particular integral of Eq. (4.10), we will obtain

O=o Cos (k* Of (4. 13)
cos k

The value of k in Eq. (4.13) is determined from the boundary con-

dition (4.7). Using Expressions (4.8) and (4.9), we represent this

condition in the form

(-Le, -Ip,,, (4. 14)

where

r - r.
Ce T- To

while P is the Biot number

1 (4.15)

Differentiating (4.13) with respect to :

De • cos k
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Substituting this equation into Expression (4.14) and taking Into

consideration the fact that when t = 1, 0 = est, we will derive the

following equation in which Eq. (4.13) will have been taken into con-

sideration:

ktgk=p. (4. 16)

This equation is useful for determining k. Since tan k is a periodic

function with the period 7r, k will be a multivalued function. Equation

(4.16) is transcendental and cannot be exactly solved analytically. We

will deal with the practical determination of k below.

The total Eq. (4.10) integral can be a linear function of the par-

ticular integrals given by Eq. (4.13). If kn is a value of k, from Eq.

(4.16), the total integral of Eq. (4.13) will be:

A cos (kj) ek-P, (4.17)

where the constants Ost0/cos kn are included in the coefficients of

the series An.

The values of A. are determined from the initial conditions at

= 0. Let 80 = f( ) at the initial instant of time; then

00= Agcos(kj)-f(t).
n--.

Let us multiply both sides of this equation by cos (kme)d and

let us integrate the new equation obtained within the limits of change

in from 0 to 1:
a-- I I

E cos (k,, t) cos (kt) A f (Z) cos (kt)dj. (4.18)

Replacing the derivative of the cosines by the sum of the coslnes

and integrating, we obtain:

Ijcos (k,) cos QA.~ A~ [cos (k - k.)+cos (h, + h8 ) d
2 I
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Taking into consideration the fact that

Ilmm.t n [sinka-ki)j_ i

where km ±k n,

;J=-L- + --i-sin2ka)

Where k m +kn, using Function (4.16), we will obtain:

I

k ~(coskcosk,,-cosk,.cosk.)=0.

Consequently, in the series of Expression (4.18), of all the

terms only two remain, for which kn = km and kn = -km; Expression

(4.18) will, in this case,be written in the following way:

I

+A.I +! Ik.)+ IA.i+;k)Sf(t)cos(ktdt.
0

Hence

A A ,= 4slnk,, -, ff(t)cos (k 1 d.
2k,,+sin2kjs, k sin

When km = k0 only one term remains in the series of Expression

(4.18):

whence

Ao= 4,tnO iko 'Q)cos(kot) A.
2ko+ sin 2ko sin ko

The total integral in (4.1,) may now be represented in the

following form If-" 4sink, -&I I ()c ,)d.

2ka+ in ksin k,fQ

Here we take into consideration the fact that k and that coB

(kne) is the even function. This is the final expression for the re-

lative temperature.

For the sake of convenience we will assign the subscript "1"
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rather than "0" to the first term

4s,,,. (4.20)
2kx + sin 2k,;
I

then

B,,, cos (k ) e-4. (4.22)

The value of the coefficients B should be determined while tak-n

ing into consideration Eq. (4.16) which determines the coefficients

kn . The first value of k, corresponds to the value of the angle in

the first quarter of the circumference; the second value corresponds

to the angle in the third quarter, etc. Thus the range of the values

of k will be:n
0<k,<J-; w <k< ; 2-<k,<57

2 2 2

The values of Bn corresponding to these values of kn will agree

with Formula (4.20):

1<B,< 1,273; 0>B,>-0,425; 0<B<,255.

The values of Cn are determined for the most part by the functions

f( ), and also by the values of the coefficients kn. At constant tem-

perature along the width of the plating at the beginning of heating,

the functions 8 = f(e) = 1 and Cn = 1. If the temperature in various

layers of the plating is higher than the temperature of the outer sur-

face at the beginning of heating, f(e) < 1 and, consequently, Cn < .

Table 4.3 gives the values of the first three coefficients kn,

while Table 4.4 gives the values of the coefficients Bn obtained from

the work of A. V. Lykov ([14], pp. 155 and 160).
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Since = 1 for the outside surface,

SC.C(4.23)

For the inside surface = 0, f(E) = 1, and n= 1; consequently,

082 ek. (4.24)

In the majority of cases, for calculation of e from Formulas

(4.22) (4.23) and (4.24), it is entirely permissible to take three

terms of the series, since the series for 0 converges rapidly.

Formula (4.22) can be used to calculate the temperature distri-

bution along the thickness of the plating and when a and Tr are vari-

able. In this case the given heating or cooling times for the plating

are subdivided into ranges such that within these ranges the change

in a and Tr is comparatively small. Within these ranges it is assumed

that a and Tr are constants and Formula (4.22) is used. Let us note

that if Tr is variable, 0 at the end of the preceding range does not

equal the value of 0 in the beginning of the subsequent range. This

is explained by the step-wise nature of Tr .

Formula (4.22) did not take into consideration the radiation of

the plating. It should be noted that in a nonsteady-state aerodynamic

heating regime far from temperature equilibrium, the effect of the

radiation heat on the temperature regime of the plating is not great.

Consequently, in this case, the radiation heat may be calculated ap-

proximately by introducing the equivalent heat-transfer coefficient:

Since qiz/(Tr- Tst) is variable, the calculation taking the

radiation into consideration should be carried out in the same way as

that of the variable heat-transfer coefficient, i.e., by dividing the
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flight time into intervals.

At a wall temperature close to equilibrium, the radiation effect

may be taken into consideration if we represent the specific heat flow

involved in the heating of the plating in the form

q.,= a (,- T,,) - eo7, = =.0 (TP,.8M-,),

where Travn is the equilibrium temperature and determined from equa-

tion

,(7,- T.,,)-,.°.. =0.

Calculating the latter formula from the preceding and factoring

T4 T4
ravn-Tst' we get:

For materials with low conductivity, for example, heat-insulation

materials, after a short heating period, Tst gets very close to Travn

and consequently in the latter expression we may assume Tst/Travn z 1,

then

ac1 +4(9 ~11

We can sometimes be limited to one term of the series for 9.

Actually, In this case when P < 0.1, the second term of the series

will be less than 2% of the first, while the third will be less than

o.5% of the first. For 9 > 0, the relative values and the second and

subsequent terms will be even lower.

For < 0. 1, we can assume in approximate terms

tgk= k,

then k2 13 and k

The error in the determination of k1 under this assumption will

be less than 1.6%. In this case
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2L. -

TABLE 4.3.
Values of Coefficients kn

(kn  tan kn  = 1)
-o f °° 1 0° ° 2 1 4 I 0 ,o00o1 0 ,0 02 0 . _1 0_00_ 0 ,0 0 8_0 0 0 ,0 2 o_ o

ki 0.0000 0,0316 0,0447 0,0632 0,0774 0,0893 0.0998 0,1410 0,1987 0,2425

k2  3,1416 3,1419 3,1422 3,1429 3,1435 3,1441 3,1448 3,1479 3,1543 3.1606

k3  6,2832 6,2833 6,2835 6,2838 6,2841 6,2845 6,2848 6.2864 6,2895 6,2927

0.08h °1 102 10. 0,4 0,5 0,6 0.7 081 0

/1  0,2791 0,3111 0,4328 0,5218 0,5932 0,&533 0,7051 0,7506 0.7910 0,8274

k2  3,1668 3,1731 3,2039 3,2341 3,2636 3,2923 3,3204 3,3477 3,3744 3,4003

k3 6,2959 6,2991 6,3148 6,3305 6,3461 6,3616 6,3770 6,3923 6,4074 6,4224

1',0 11,5 2.0 3,0 4,0 5,0 6,0 7,0 80 9,0

/i 0.8603 0,9882 1,0769 1,1925 1,2646 1,3138 1,3496 1,3766 1,3978 1,4149

/2  3,4256 3,5422 3,6436 3,8088 3,9352 4,0336 4,1116 4,1746 4,2264 4.2694

k 3  6,4373 6,5097 6,5783 6,7040 6,8140 6,9096 6,9924 7,0640 7,1263 7,1806

A 10 5 2 30 ~ 40 50 ~ 60 80 f 100 0

k1  1.4289 1.4729 1.4961 1.5202 1,525 1.5400 1,5451 1,5514 1,5552 1,5708

*2 4,3058 4,4255 4,4915 4,5615 4,5979 4,6202 4,6353 1,6543 4,6658 4.7124

kh, 7.2281 7.3959 7.4954 7.6057 7,6647 7,701Y 7,7259 7,7573 7,7764 78540

Where we designate

(rs is the time constant of thermal inertia).

When 1 < 0.1, we may also simplify Expression (4.20) for Bi.

Assuming k sin kl, we obtain:

2 2
1 +cos k, I +cosa(9,

With the assumption made, 0 may be represented in the form

I + / (4.25)

In the case of equilibrium temperature distribution along the

thickness of the plating, when T a 0, CI - 1, and consequently,
on ( Prv ('') _-,I7,,
I +Cos¢ ' (4.26)

where 0 is determined from Formula (4.15).

- 101-



TABLE 4.4.
Values of Coefficients Bn

(B, - 4sn ktgk )
2kn +sin 2k.'

0 0,001 0.002 0,004 0,006 0.008 j0.01 002 004 0. 0r,

B1 1,0000 1,0002 1,0004 1,0008 1,0012 1, 001 6 ,0016 1,0030 1,0065 1,0099

B2 0,0000 -0,0002 -0,0004 -0,0008 -0,0012 -0,0016 -0,0020 -0,0040 -0,0080 -0,0119
8a  0,0000 0,0000 0,0001 0.0002 0,003 0,0004 0.0005 0,0010 0,0020 0,0030

0,08 1 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90

B, 1,0130 1,0159 1,0312 1,0450 1,0581 1,0701 1,0813 1,0918 1,1016 1,1107
B. -0,0158 -0.0197 -0.0381 -00555 -0,0719 -00873 -0,1025 -01154 -0,1282 -0,1493
Ba 0,0040 0,0050 0.0100 0.0148 0,0196 0,0243 0,0289 0.0335 0,0379 0,0423

1,0 1.5 2,0 3,0 4,0 5,0 6,0 7,0 8.0 9,0

B, 1 1,1537 1,1784 1,2102 1,2287 1,2403 1,2478 1,2532 1,569 1,2598
B2 -0,1517 -0,2013 -0,2367 -02881 -0,3215 -0,3442 -0,3604 -03722 -03812 -0,3880

B3 0,0466 0,0667 0,0848 0,1154 0,1396 0,1588 0,1740 0,1861 0,1959 0,2039

S1I10 15 20 30 40 50 60 80 100 ____

B, 1,2612 1,2677 1,2699 1,2717 1,2723 1,2727 1,2728 1,2730 1,2731 1,2732
B2 -0,3934 -0,4084 -0,4147 -0,4198 -0,4217 '-0,4227 -0,4232 -0,4237 -0,4239 -0.4244
B3 0,2104 0.2320 0.2394 0,2472 0.2502 0,2517 0.2526 0,25 0.29 0.2546

To evaluate the accuracy of Formula (4.26), Table 4.5 gives the

errors which result from this formula in comparison with the exact

Formula (4.22) with a constant initial temperature along the thick-

nes of the plating.

It is apparent from Table 4.5 that the accuracy of Formula (4.26)

is determined not only by the value of P, but also by the relative

heating time T/1 s . At T/Ts = 0, Formula (4.26) produces the greatest

error. However, these errors are substantially reduced when T/Ts = 0.01.

Formula (4.26) may also be used for 0 > 0.1, if in this case,

T/T is sufficiently large. For example, in the case of P = 0.2 and

T. = 0.1, there are few errors.

It is apparent that the accuracy of Formula (4.25) will be approx-
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imately the same as the accuracy of Formula (4.26).

TABLE 4.5
Accuracy of Formula (4.26) 0= +Cos F

-I TO 1o 4OuIIfKa "O no Ow fi6a
(4. 26) (4.22) | % (4.26) (4.22) B 0/

0 0,05 1,012 1,000 +1,2 0,989 1,000 -1,1

0 0.10 1,023 1,000 +2,3 0,975 1,000 -2,5

0 0,20 1.050 1,000 +5,0 0,947 1,000 -5.3

0,01 0.05 1.002 0,997 +0,5 0,977 0,976 +0,1

0,01 0,10 1,013 0,999 +1,4 0,963 0,965' -0,2

0,01 0,20 1,040 1,00D - -3,6 0,938 0,953 -1.6

0,10 0.05 0,918 0,917 +0.1. 0,895 0.895 0

0,10 0.10 0.928 0,921 +0,8 0,883 0,879 +0,5

0.10 0,20 0,950 0,9410 +1,1 0,860 0,854 +0,7

i) Error, in %.

In the case metal plating, 3 in many practical instances of aero-

dynamic heating will be less than 0.1 and consequently to reduce the

amount of calculation while determining 0, we may use Formula (4.25)

and (4.26) in these cases.

§4.3. THE CRITERION OF THIN PLATING

§4.1 gave a solution of the heat-conduction equation on the

assumption that the plating was so thin that the temperature differ-

ence across its thickness was insubstantial. The question naturally

arises, when can plating be considered thin; in other words, we must

establish a criterion for thin plating.

Since the temperature difference across the thickness of the

plating never equals zero, for all practical purposes it is necessary

to establish the permissible difference at which the plating may be

considered to be heating uniformly. We will characterize the heating

equilibrium of the plating by the relation of the temperature incre-

ment of the inner plating surface to the temperature increment of the
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of the outer surface, i.e.,

A T.!A7r.

Let us introduce the concept of a relative temperature difference

across the thickness of the plate and designate it as ep, in which case

. t,, I .. (4.27)

Let us express the relative temperature of 6 in terms of the

temperature increment, using Formula (4.8):

___ -_ _ AT

where AT = T- TO P

hence

Consequently,

%=I -0 -- eon) M, Pn!--AT)
(- O,) (I -O,) (4.28)

Assuming the values of the permissible relative temperature

difference sp, from the latter equation we can find the plating thick-

ness at which this temperature difference may be obtained. Evidently,

thicknesses less or equal to that found will correspond to thin plat-

ing.

Since it is necessary to have an approximate solution for the

criterion of thin plating, we can derive it from approximate functions.

For thin shielding, the Fourier criterion, as can be seen from what

follows, is 9 > 1. Consequently, in the expression for the relative

temperature (4.22) it is entirely possible to limit ourselves to one

term of the expansion. For low values of 0, as was shown in §4.2, we

may assume that k2 - 13. In addition, the value of the coefficient B1

according to Formula (4.20) may be assumed to be
Ba.z.4kI(2kj + 2k,)- 1.
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Then, with the assumption that = , Formula (4.23) and (4.24)

may be represented in the following form

6.---cos]/F-e-Pr; O.-e-P,.

The relative temperature difference may now be represented in the

form

1-Cos V#'e-'Y?-

At low values of 0 we can expand the functions coo %-and e-P'

in series and limit ourselves to two term of the expansion, i.e., we

may assume

cosV =1 - '; e-"=1-py. (4.29)
2

Then

i 2(- y) I -- I

2- 2 -

Hence
I -- es I -e

At low values of P we may assume

2

then

I (I-e,)
2- a. (4.30)

Taking into consideration P with respect to Formula (4.12), we
obtain:

¥ (I - d

Consequently, we may assume thin plating to be that plating at
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which

a(64) (4.31)

It should be borne in mind that this criterion of thin plating

is applicable in cases in which the values of 0 are low, i.e., those

values at which the above approximations for kl , cos and ek

are permissible, and this with a sufficient degree of accuracy.

With a view to comparing Formula (4.30) with the accurate solu-

tion, Fig. 4.3 gives the graph constructed from the results of exact

calculation for p with respect to 0 where ep = 0.1. It is appararent

from this graph that for A < 0.1, the value of q from Formula (4.30)

is sufficiently close to the exact value. At high values of P, the

value of 9 drops, so that for P > 10 we can assume I 1 for Ep = 0.1.

In this case:

OQ< J/a. (4.32)

In the general case

This formula may be used together with the graph given in Fig.

4.3, from which we determine the value of ( at ep = 0.1.

When 0 > 10, 9 may be determined from the following formula

y=o,933lg( 1273(3

The latter formula was found from the condition =.

For metals, 0 is generally of the order of 0.1 and less; conse-

quently, we may use Formula (4.31) as a criterion of thin metal plat-

ing. For laminated plates, the thermal conductivity is less by a

factor of a hundred than in the case of metals; consequently, P will

be substantially lower in the case of metals, and so for laminated
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plates and, in general, for plastic, we

should use Formulas (4.33) and (4.34).

- -If the heat-transfer coefficient is

J ........ small (c < 0.1), then in the case of plas-

2 tic the criterion of thin plating should be

determined from Formula (4.31).

As far as ceramic materials are concerned,

001 of 1'0 10 0 7O: their thermal conductivity is lower by a fac-

Fig. 4.3. Graph of the tor of only ten than in the case of metals,
Fourier criterion for
thin plating with a re- and consequently the value of p will be some-
lative temperature dif-
ference of ep = 0.1. 1) where between the values for metals and lam-

From the following for- inated plates. These values of q should be
mula

( - ep)/2e p determined from graphs analogous to that given

2) from exact calcula-
tion. in Fig. 4.3, or, if we want to be especially

cautious, we should calculate 6ob from Formula (4.31).

Table 4.6 gives the maximum thickness values of a thin plating for

various materials where sp = 0.1. Metal and aluminum-oxide calculations

were carried out in accordance with Formula (4.31), while asbestos,

glass, and laminated plastic calculations were carried out in accord-

ance with Formula (4.32).

The thermal conductivity of metals in Table 4.6 was determined at

2000 C.

§4.4. THE DETERMINATION OF THE THICKNESS FOR HEAT-INSULATION PLATING

A number of materials with low thermal conductivity are used for

heat insulation. The required heat-insulation thickness in a steady-

state thermal process is easy to find from Formula (3.4) in the pre-

sence of internal cooling;

90Z (4.35)
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TABLE 4.6.

Maximum Thickness Values of Thin Plating for Various Materials at
Ep 0.1.

Te.mnepa'iypo- flpecelbI aRue s
.Tor ol o6WHDK i ..

Maiepiax 2 IIpOBOAHOCTb2 - I +
.412/ce. 1251 - a1 ceg

Amom.inH 8,7.10-5 14 44

Y Marrndl 7,2-10-5 13. 41
6epimaA 5,9.10-3 11 36

8 )eieso 1.5.10-5 5.8 18
C CTaajh IX18H9T 0,42,10- 5  3 9,6

lOTniraH 0,6.10-5 3,6 11
1 lMos6Aen 5,1.10-5 11 34

L2 Hmiceab 1,4.10- 5  5.6 18
-3 Ooics aoummin A12 0 3 np 1000 C 6,2.10- 7  1,2 3,7

151)
LTeICTOAXHT I]pu 200C 1,5-10-7 1.2 3.8

15CTexjio ripH 2000 C 5,910- 7  2,4 7,6

L6 CTecjioTeKCTOAXHT 16] 2.10 - 7  1,4 4.4

17Ac6eCT, 1=100 Xzlj. 3  7.10-7 2,6 8,4

1) Material; 2) thermal diffusivity; 3) maximum size of thin plating,
in mm; 4) where; 5) aluminum; 6) magnesium; 7) beryllium; 8) iron;
9) steel IKhlbNgT; 10) titanium; 11) molybdenum; 12) nickel; 13) alu-
minum oxide A1.03 at 10000 C [51; 114) textolite at 200 C; 15) glass

at 2000 C; 16) glass-textolite [61; 17) asbestcc, y = 100 kg/m 3.

The required insulation thickness is proportional to the thermal

conductivity and does not depend on its heat capacity.

Porous and loose fibrous materials exhibit the lowest thermal

conductivity. Moreover, as the porosity and brittleness increase and

the weight of the material correspondingly decreases, the thermal con-

ductivity of the material approaches the thermal conductivity of air.

The thermal conductivity of asbestos, depending on the degree of its

looseness, will be (see [25)):

1 Up1t 7=- O Z/
. . .
3 

. . . . . . . . . . .. . . . . =2,5.10- ('1+0,0018 t)

T .W . . . . ........ X=1,8.10-5 (1-0,0022 )
7==100 ................ .X=1,5.I0-3 (1+0,0027 t)

1) Where.

The thermal conductivity of air
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X =0,56-10-'( 0 +0,00301)

The porous and loose fibrous materials have very low mechanical

properties and consequently can be used only for the inner facing of

the plating.

Among the heat-insulation materials of great strength are certain

types of plastics and, in particular, laminated plastics. However,

their thermal conductivity is greater than in the case of porous ma-

terials. For example, textolite has a thermal conductivity (see [25])

X 7 " l0- 5 kcal/m -sec -deg.

The ceramic materials are heat resistant and sufficiently strong

to be used for the outside coating; however, they have even greater

thermal conductivity. For example, aluminum oxide A1203 has, at 10000 C,

a thermal conductivity (see [51])

= 6 • I0- kcal/m .sec .deg.

In addition, ceramic insulation is very brittle and cracks easily

under intense heating.

In a nonsteady-state thermal process, the required heat-insulation

thickness should be determined from Eq. (4.24) in the general case;

moreover, it is necessary to give the permissible temperature values

of the inner surface. However, the solution of this equation for q,

and later also for 6iz, in the general case can be obtained only graph-

ically or by interpolation, if the values of 9 are given.

The temperature of the inner surface can be assumed on the basis

of the relative temperature difference [see Formula (4.27)]. For ex-

ample, for practical purposes in a number of cases the following would

be entirely acceptable.

ArE -=01

then
8.=0,9.
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Given the value of sp and knowing the value of 9 st, we can de-

termine the relative temperature of the inner surface from Formula

(4.28):

. + 0. 0l -, )

For the given equation we can limit ourselves to one term of the

series in Eq. (4.23) and (4.24).

Then at n = 1 (the constant temperature along the thickness of

the plating at the beginning of its heating)

The calculation of exact values of st/0vn and subsequent deter-

mination of the corresponding values of 9 by successive approximations

indicates that in the case of the given 0st /8n = cos k,, the errors

will be at high values of p. In reality, when ep increases, 9 decreases

and where ep = 1, (p = 0. This is evident from the structure of Eqs.

(4.23) and 4.24), and also from Table 4.7.

Assuming that for all practical purposes we scarcely need a value

of e greater than 0.95, we can calculate the errors for p = 0.95

at various values of A. The relative errors in the determination of

the insulation thickness, assuming 9st/evn = cos kI are as follows:

1 31ta-tenx,, 0,1 1,0l 10 00

Boidm onipeae.ieiiii1 TOJIUHL M30- 4 5 0.7 0,4.15II 1111 B ?6I

1) The value of 1; 2) errors in the determination of the insulation

thickness, in %.

Where sp < 0.95, there will be even fewer errors in the required

insulation thickness.

Assuming Gst/8vn = cos k,, from the above-given value for 0vn ,
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we f ind:

f I-(I-an) COSk,I (4.36)

Giving the value of ep, we can determine Ovn for the given value

of P from this formula.

The insulation thickness required to ensure the given relative

temperature difference can be determined, if we know the value of the

Fourier criterion;

then

The value of 9 can be calculated in the following way. Assuming

certain values of q, let us find the corresponding values of evn from

Eq. (4.24). Having determined the required value of vn from Formula

(4.36), we can find the sought value of ( graphically or by linear

interpolation.

Table 4.7 gives the determination of values of ( for various

values of p and P. We were limited to two terms of the series in the

first three rows when we determined the values of 9vn from Eq. (4.24).

In the subsequent rows, the values of Ovn were determined from Formula

(4.36).

The value of 9 was determined by linear interpolation; for P = 0.01

and 0.1, the value of c was determined graphically.

The results of the calculations are presented graphically in Fig.

4.4. By using this graph, we can determine rather rapidly the required

insulation thickness.

It should be noted that the indicated method for the determination

of the insulation thickness was used formally under those conditions

in which Eq. (4.24) was found. If the values of Tr and a are variable
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in flight, it is possible approximately to determine the insulation

thickness by averaging Tr and a with respect to time.

TABLE 4 .7.
The Determination of the Fourier Criterion (9) at Various Relative
Temperature Differences

o01 0,1 11,0 J 0 1oo

e,, at 7=0,1 0.99987 0,9989 0,9919 0,9690 0.9496 0,9495
eon at V=0,2 0,99935 0,9939 0,9523 0,829.5 0,7795 0,772)

es, at 7=0,3 0,99851 0,9850 0,8915 0,6745 0,6144 0,6065
coskt1  0,995 0,952 0,652 0.1413 0,0158 0

6.=0,80 f 1H 0,99880 0,9877 0,9199 0,8230 0,8030 0,8000
T 0,272 0,275 0,253 0,204 0,186 0,184.

a,.=0,85 ' e" 0,99912 0,99125 0,9423 0,8685 0,8522 0,8500
I Y 0,225 b,237 0,216 0,172 0,157 0,156

a O.=90 on 0,99950 0,99470 0,9628 0,9130 0,9015 0,9000

( T 0,175 0,184 0,174 0,140 0,1283 0,1280

an=0,95 OEM 0,99974 0,99748 0,9820 0,9567 0,9506 0,9500
0,130 0,135 0,125 0,109 0,099 0,097

To illustrate the method for determining the required insulation

thickness, as an example, let us determine the required glass-textolite

thickness for the plating of the instrument bay of a cone subject to

intense aerodynamic heating for sixty seconds. Let us determine this

thickness for the initial data corresponding to the example considered

in §4.1.

It is necessary to assure a temperature for the inner plating

surface that is not higher than 800 C.

Let us initially determine the temperature of the outer surface

which, due to the low thermal conductivity of glass-textolite, can

approximately be assumed to be equal to the instantaneous equilibrium

temperature, understanding by the latter the temperature at which

qi-=xr

Let us find this temperature by successive approximations, using

Table 4.2. For T - 20 sec.:
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l 3.'aemicq TC 750 780 779 778

2 Haon 6.71 4,37 4.45 4,52

3 H-axo.jit qj, J 3,85I 4,50 14.48 4,46

I) Given Tat; 2) let us find qa; 3) let us find qiz"

Hence, it is apparent that at T = 20 sec., Tat = 7790 K. Similarly,

let us find: for T = 60 sec., Tst = 4900 K.

Let us average the wall temperature with respect to time, assum-

ing that the linear change of Tst is in the time intervals from 0 
to 20

sec. and from 20 to 60 sec.:

(T = 302+779 . 2 77+4 404

2 Ip- 2 + 2 " 4K

Consequently, the temperature increase for the outer surface

AT,, 604 -3O2=3020;

the temperature increase for the inner surface according to the 
condi-

tion
At=3530-3020=510.

The relative temperature gradient

S.-I-51 0,831.
302

Averaging a with respect to the temperature:

0,0323+0.0780 20 0,0780+0,0465 40
2 2 - 0,0598.% : 2 2' - 60

To determine the value of A, a rough estimate of the plating thick-

ness 6ob = 5 m is assumed; then

A0S0o ,. O,0.005427
A 1 7,10-5

From Fig. 4.4 we will find that p - 0.202

Consequently, according to Formula (4.37)
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I 0,0077 
I

0.202

Let us make the second approximation, making the value of P more pre-

cise:

0,0598.0,0077
7.0-6 =6,57.7. l0-'

From Fig. 4.4 we find that q = 0.192, and consequently,

o=1 2.10 - 7.  60 =0,0079.

V 0.192

It is apparent from the calculation that the effect of P on the

result is insignificant. It should be noted that the scale of the axis

of abscisses in Fig. 4.4 is logarithmic and encompasses a range of

change in P from 0.01 to 1.00 (by factor of 10,000). Because 1 has

little influence on the result of the calculation, we need not deter-

mine the value of a in the value of P with great accuracy.

The heat-insulation calculation given is based on the assumption

that the temperature of the outer surface is equal to the instantaneous

equilibrium temperature.

In fact, the temperature of the outer surface and, consequently,

the obtained insulation thickness is somewhat increased. On the basis

of the obtained data, we can determine the temperature of the outer

surface and make more precise the required insulation thickness.

For P = 6.57, from Tables 4.3 and 4.4 we find: k1 = 1.36,

k2 = 4.14, B1 = 1.25, and B2 -- 0.366; consequently where q - 0.192

from Eq. (4.23) we find:

est = 1.25" O. 2108 e709355 + 0.366.0.5446 e3.28 = 0. 1850 + 0.0075 =

= 0.1925.

To calculate the radiation we assume that the temperature of the
adiabatic wall is equal to the equilibrium temperature; then we obtain:

0 = T,-Tc, .604-CO,1925;

T,- To 604-302
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hence Tst = 5460 K. Consequently, ATt - 546 - 302 = 244 and

e.=1-- T '---" =I - = 0,799.
ST,, 248

From Fig. 4.4 we find = - 213; consequently

--- 2.10' - .  6 -0,0075 , 7,5 M..0,213

Consequently, the temperature taken equal to the equilibrium

temperature produced an error of +5% in the determination of the heat-

insulation thickness.

0,28- - ~ ~ ----o.2 P -- -;--

'P = .,0,2. a t

0,24 -

'" '6-- 0 0

, I

Fig. 4.4. Graph of the Fourier
criterion at various relative
temperature differences.

We can approximately estimate the value of the Fourier criterion

from the following formula

= 1,71gl. (4.38)

According to this formula, the error in the determination of the
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thickness for sp > 0.8, will be less than 12%.

According to this formula, for the above-considered example

cpl,71g "' ----0,238.
0,798

Consequently

8,6=0,0071 x,

i.e. , the error is 5%.

When selecting the heat-insulation material, given satisfactory

mechanical strength properties and physical (adhesion, breakdown tem-

perature) properties assuring the possibility of its use under the

given conditions, it is necessary to evaluate the feasibility of

using a given material with respect to weight.

Formula (4.37) makes it easy for us to compare the various ma-

terials with respect to weight in a nonsteady-state thermal process.

In reality, the weight of 1 m2 of the sheet material for the required

heat-insulation thickness will be:

C773 V

The value of T/9 is in the main determined by external conditions,

and this is apparent from Formula (4.38). Consequently, the weight

criterion, depending on the physical properties of the material and

proportional to the weight of the required insulation, will be

Table 4.8 gives the value of this criterion for certain heat-

insulation materials.

Table 4.8 gives three groups of material: ceramic insulation,

laminated plastics, and porous insulation (including loose fibrous

insulation). Within each group, the heat-insulation materials have
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weight criteria which are comparatively close. However, the weight

criteria of materials from various groups differ greatly.

Porous materials possess the lowest weight criteria, but because

of the low mechanical properties, they can be used only for internal

insulation.

It should be noted that the thermal conductivity of porous mater-

ials increases substantially as the temperature increases; consequently

the insulation should be calculated at an average temperature. Table

4.8 gives the thermal conductivity of porous materials at 2000 C.

TABLE 4.8.

Ideal-Weight Criterion for Certain Heat-insulation Materials

lpelte~b.C / uas Tel " m Jwlrepa-

lmepi aa x X7.V nepaTypa rypHuA
m 4x 2 a '- 3  -a~a ~ npm

2 Qc cgun

SO*ifcc aJ ,ilR 6.10-' 3200 10,30 2.5 2000 [511
5 OKKcI KuspKowsu 2.1.10-4 4400 0.18 2.3 2W 151]
6 -I

TexcroAHr 0,7.10-4 1350 0.35 0.52 250 (251
CTeAOTeKCTOJIHT 0,7.10-4 1600 0.24 0,69 300 [61

( AcOecronU, Kap- 0,44.10- 4  1000 0,20 0,47 450 (251
TOR

9 'TOpOnaaCT 0.59.10-4 2200 0,25 0.72 400 (321

3.0 Ac6ecr pacny-en- 0,22.10-4 100 0,20 .0,105 600 1251

-1 M iepaamas sBIa 0,18.10-4 iS0 0.22 0,110 600 (251

12 CTexaosaoaw oI 0,26.10-4 120 0,20 0,125 450 (251
13 flenocrexao 0.26. 10-4 200 0,20 0,160 500 [251

1) Material; 2) temperature limit of application in 0 C; 3) literature
source; 4) aluminum oxide; 5) zirconium oxide; 65 textolite; 7) glass-
textolite; 8) asbestos cardboard; 9) fluorine sheet; 10) loose asbestos;
11) mineral cotton; 12) fiberglas (mat finish); 13) foam glaas.

Ceramic insulation possesses a weight criterion several times

greater than the criterion for laminated plastics, but it has a higher

breakdown temperature (melting). It is true that the temperature ad-
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vantages of ceramic insulation cannot always be used, since the cer-

amic insulation may crack during intensive heating (thermal shock).

Like outer heat insulation, laminated plastics possess good

weight qualities and have a comparatively low breakdown temperature.

It should be noted that in Table 4.8, the practical temperature limits

of laminated plastics correspond to the long-term effect (many hours)

of high temperature. In the case of a short-term effect (seconds and

single minutes), the permissible operating temperatures for laminated

plastics may be substantially increased.

In the case of a single short-term effect, the laminated plastics

may even be used at air temperatures of several thousand degrees; it

is true, of course, that in this case the upper layer will be subject

to erosion and sublimation, so that with time the thickness of the

plate will decrease. In addition, it should be borne in mind that after

this removal of metal the remaining thickness of the plate will have

a carbonized upper layer, while the layer beneath will be broken down

(cracks, folliation).

For example, in tests of glass-textolite in a plasmatron stream

formed at normal atmospheric pressure, the loss rate depended on the

temperature of the stream and ranged from 0.033 to 0.8 mm/sec.; in this

case the temperature range was from 2000 to 130000 K (45). For the

temperature range 20000 K < T < 6000" K, the loss rate was almost

linearly dependent on the temperature and consequently the thickness

of the loss can be represented in the form

8r=(J175. 10-4-o,205), X. (4.39)

The thickness of the carbonized layer and damage to the glass-

textolite structure depend on the loss rate (see (45]) and for 33000 K

< T < 60000 K may be expressed by the formula
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% tM (4.40)

For T < 33000 K, the value of 6pv begins to drop.

Manu-
script [List of Transliterated Symbols]
Page
No.

86 T = T T =T
CT st stena wall

86 qn = q, = qluchistaya = qradiant

87 TO6 Tob = Tobshivka = plating

87 9ar = q nag = qnagrevaniye = qheating

92 BH = vn = vnutrennyy = inner

100 paBH = ravn = ravnovesiye = equilibrium

100 ep = ef = effecktivnyy = effective

107 ma = iz = izluchayemyy = radiated

107 ox = okh = okhlazhdeniye = cooling

113 cp = sr = srednyy = average

118 yr = ug = ugar = loss
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